

Android APK Identification using Non Neural
Network and Neural Network Classifier

Djarot Hindarto*, Handri Santoso
Magister Technology Informatic, Pradita University

Tangerang, Banten, Indonesia
Email: djarot.hindarto@student.pradita.ac.id, handri.santoso@student.pradita.ac.id

*Corresponding Author

Abstract The purpose of this study is to identify Android

APK files by classifying them using Artificial Neural
Network (ANN) and Non Neural Network (NNN). The ANN
is Multi-Layer Perceptron Classifier (MLPC), while the NNN
are KNN, SVM, Decision Tree, Logistic Regression and Naïve
Bayes methods. The results show that the performance using
NNN has decreasing accuracy when training using larger
datasets. The use of the K-Nearest Neighbor algorithm with
a dataset of 600 APKs achieves an accuracy of 91.2% and
dataset of 14170 APKs achieves an accuracy of 88%. The
using of the Support Vector Machine algorithm with the 600
APK dataset has an accuracy of 99.1% and the 14170 APK
dataset has an accuracy of 90.5%. The using of the Decision
Tree algorithm with the 600 APK dataset has an accuracy of
99.2%, the 14170 APK dataset has an accuracy of 90.8%. The
experiment using the Multi-Layer Perceptron Classifier has
increasing with the 600 APK dataset reaching 99%, the 7000
APK dataset reaching 100% and the 14170 APK dataset
reaching 100%.

Key words: Multi Layer Perceptron Classifier, Artificial
Neural Network, Non Neural Network, APK Malware
Android

I. INTRODUCTION
Currently, the development of APK malware is

increasing, along with the number of Package Kit
Applications (APKs) which are applications that run on the
Android operating system. So many Androids APKs,
causing more and more certain parties to attack for
purposes that are profitable for malware makers.
Therefore, there are many losses for Android Mobile
phones that have been infected by malware. From year to
year the development of malware has increased, for this
reason this research uses the topic of Android malware.
Intents are interfaces that connect interactions between
Activities in an Android APK. In addition, Intents send
data to other Activities, such as sending data to other
applications (Gmail, Google Map, etc.). In essence, Intent
is a mechanism to perform an action and communicate
between application components.

Originality: Most of the journals in the literature
review focus on feature permissions, rarely exploring
feature intents. An Android APK to activate an action or
activity calls a component, sends data, requires a feature
intent. Without feature intents, Android cannot perform
action functions. Therefore, this research focuses on

feature permissions and feature intents. Malware
classification has been carried out by applying machine
learning, such as the use of the K-Nearest Neighbor
algorithm, Support Vector Machine and Decision Tree.
The average classification results are good, but if you use
a large dataset, the classification performance decreases.
Then the experiment was carried out by applying a deep
learning algorithm, namely Multi-Layer Perceptron. Some
experimental results continue to increase in accuracy with
the increasing number of datasets.

The aim of this study is to identify Android APK files
by classifying Android APK files using the Multi-Layer
Perceptron Classifier. The main contribution of this paper
is to improve the accuracy of malware classification
performance by applying the Multi-Layer Perceptron
Classifier algorithm.

Some research questions in this study:
RQ 1, How to extract malware dataset using permission
feature and intent feature?
RQ 2, What is the percentage of application of the K-NN
algorithm, Support Vector Machine and Decision Tree?
RQ 3, What is the percent increase in accuracy with the
implementation of the Multi-Layer Perceptron algorithm?
RQ 4, Is it effective to perform malware analysis using
static methods?

This article is organized as follows: Section 2 presents
related work on several articles related to the Classification
of Android malware. Section 3 describes the methodology
used. Section 4 describe Propose Method. Section 5
presents the results of the experiments that have been
carried out. Section 6 includes a summary of the paper.

II. RELATED WORK
In this study, we compare with previous research that

discusses the Android malware APK. The attackers
created malware using a new method of targeting victims
of Android mobile phones. Several studies have used
effective tools to carry out the malware detection process
as accurately as possible.

Table I shows a lot of research using extract on feature
permissions, system calls, API Calls, Net Info, but still very
rarely uses feature intent. This feature intent is an addition
to the research, in addition to using feature permissions.
This research uses feature permission and feature intent.

J-COSINE, Vol. 5, No. 2, Desember 2021

Accredited Sinta-3 by RISTEKDIKTI Decree No. 28/E/KPT/2019

E-ISSN:2541-0806

P-ISSN:2540-8895

http://jcosine.if.unram.ac.id/ 149

TABEL I. LITERATURE REVIEW

Work Features Classifier Data Performance
[1] Permission SVM

10000

Precision
98.20%
Recall 95.80%
F-measure
96.96%

25000 Precision
97.16%
Recall 93.75%
F-measure
95.42%

60000 Precision
95.17%
Recall 92.86%
F-measure
94.00%

DT 10000

Precision
98.99%
Recall 96.10%
F-measure
97.53%

25000 Precision
96.10%
Recall 93.20%
F-measure
94.68%

60000 Precision
92.11%
Recall 91.10%
F-measure
91.60%

[2]. Application
Programmi
ng Interface
(API) calls,
Permissions

SVM 347
benign,

365
mal

96.2%

KNN 347
benign,

365
mal

97.2%

DT 347
benign,

365
mal

96.6%

RF 347
benign,

365
mal

97.8%

Naïve
Bayes

347
benign,

365
mal

93.9%

GRU 347
benign,

365
mal

98.2%

[3] Permission Chi-Square
& Naïve
Bayes

5000
mal

Drebin
and

5000
benign
(Andro

zo)

91.1%

[4] API &
Permissions

RF
ANN

5000
benign,

1260
mal

94%
94%

Work Features Classifier Data Performance
[5] Permissions

, APIs
SVM 1500

benign,
1500
mal

99.6%

[6] APIs, Net
Info, etc.

SVM
K-NN ERT

5560
benign,

5560
mal

90.4%
 90.47%
93.66%

[7] APIs, Net
Info

Ensemble 4403
benign,

3982
mal

99.7%

[8] APIs, Net
Info

NB
RF

K-NN
XGBOOST

DL

11187
benign,
18677

mal

87%
96%
94%
97%
96%

[9] Permissions
& Intents

BN
SVM
DT
 LR

1846
benign,

5560
mal

95.5%
94%
83%
91%

[10] Permissions
& Intents

Ensemble 445
benign,

1246
mal

99.8%

III. METODOLOGY
In this section, the researcher discusses malware

analysis and classification [11] research methodology.
Performing malware analysis there are three analyzes,
namely static analysis[12], dynamic analysis and hybrid
analysis. The use of the malware identification or detection
method is a supervised learning classification. The
algorithm used is KNN, Support Vector Machine and
Decision Tree, as well as Deep Learning Multi-Layer
Perceptron Classifier[13] [14].

A. Static Analysis
Static analysis [15] is a malware analysis method by

analyzing source code. Reverse engineering is used to
obtain the source code file, which converts the executable
file into a source code file. To analyze the malware APK
file, for example, the APK file must be reverse engineered.
Analyzing static malware does not need to run the
application. Using the JADX module from APKTOOL, to
do reverse engineering. The source code to be analyzed is
the AndroidManifest.xml file. This file is then read or
parse android-permission and android-intent.
Some purposes for reverse engineering:
• To know the protocol of a program. For example:

want to create a command line Instagram client.
• To find out the API used by a program. For example,

you want to know how to turn on the camera flash as
a flashlight.

• To find security bugs for a program.
• To find out if a program violates copyright. For

example, we suspect that a program uses a
commercial library that we created, without paying
for a license.

• For forensic purposes. For example, we want to know
the data format used by a program.

J-COSINE, Vol. 5, No. 2, Desember 2021

Accredited Sinta-3 by RISTEKDIKTI Decree No. 28/E/KPT/2019

E-ISSN:2541-0806

P-ISSN:2540-8895

http://jcosine.if.unram.ac.id/ 150

Fig. 1. Architecture Multi-Layer Perceptron

Figure 1, AndroidManifest.xml file, the result of the
reverse engineering process. This file will parse the
permissions and intent features.

B. Dynamic Analysis
Malware is a threat to Android, various methods are

used to analyze malware, one of which is using dynamic
analysis. Analyzing Android malware with dynamic
methods aims to understand its behavior and improve the
ability to detect it. Dynamic analysis also takes an
analytical approach to analyze Android malware behavior.
How to perform analysis by running malware code in a
virtual environment to understand the actual behavior of
malware. The dynamic analysis method does not examine
the source code, but runs the malware files in a controlled
environment, which is called a sandbox. This way the
behavior of the malware can be analyzed in a controlled
environment, this is very useful where the malware does
not spread to other systems. After observing the behavior
of malware, a log of malware activity is obtained. This log
will be analyzed.

C. Hybrid Analysis
Dynamic malware analysis is a combination of static
analysis and dynamic analysis, where the analysis runs the
malware in a controlled environment after that it also
analyzes the source code. Hybrid model analysis is a
perfect and complete analysis for analyzing a malware.

D. K-Nearest Neighbor
K-Nearest Neighbor (KNN) [16] [17] is a classification

algorithm using a way to measure the distance, which is
measured from the k nearest neighbors. This classification
projects the training dataset in a multidimensional space.
The space is divided into sections that describe the
character of the data. Each training data is represented as
points in a multidimensional space. Where the KNN
classification[18] [19] process is looking for the point c
closest to the new (c). The general formula is to find the
Euclidean distance, Hamming distance, Manhattan
distance, and Minkowski Distance.

Euclidean distance [20] is a formula for finding the
distance between two points in two-dimensional space.
Hamming distance [21] is a way to find the distance
between two points which is calculated by the length of the
binary vector formed by the two points in the binary code
block. Manhattan Distance [22] is a formula to find the
distance d between 2 vectors in n dimensional space.
Minkowski distance is a formula for measuring between
two points in a normal vector space which is a
hybridization that generalizes the Euclidean distance and
Manhattan distance. The K-Nearest Neighbor (KNN) [23]
[24] algorithm is a classification of objects based on the
learning data that is closest to the object. Then the
determination of the K value is carried out. It is determined
that the K value is odd, after that a vote is carried out on
the closest distance. Advantages of KNN (K-Nearest
Neighbor), dataset used for training is very nonlinear and
easy to implementation. Disadvantages of KNN (K-
Nearest Neighbor): Need to indicate the parameter K
(number of nearest neighbors). Does not handle missing
values implicitly. Sensitive to data outliers (outliers).
Vulnerable to non-informative variables. Vulnerable to
high dimensionality. The computational cost is quite high,
because it is necessary to calculate the distance from each
testing data to the entire training data.

E. Support Vector Machine
Support Vector Machine (SVM) was first presented by

Boser, Guyon and Vapnik in 1992. Support Vector
Machine is a supported classification algorithm by finding
the hyperplane with the largest margin. There are three
main sections in SVM, namely Supervised, Classified and
Hyperplane with the largest margin. How the Support
Vector Machine [25] [26] [27] works. Support vectors are
two closely spaced data that come from different classes or
groups, these two data will be used as support vectors.
Hyperplane [28] [29] is the dividing line between support
vectors. Max Margin[30] is the distance between the
support vector and the hyperplane, the margin distance
must be maximum to be able to anticipate the similarity of
one data to another. For non-linear data, SVM Kernel
Trick [31] [32] [33] is used by creating new dimensions.
So that it can create a hyperplane. The advantage of SVM
is that Supervised is able to control the accuracy of
classification and Kernel trick is able to classify with non-
linear data. Disadvantages of SVM, not good for large
amounts of data and Kernel trick is not easy to implement.

F. Decision Tree
The Decision Tree [34] [35] algorithm was developed

by J. Ross Quinlan, in 1975. Decision tree is a popular
classification method, because it is easy to interpret.
Predictive model that uses a tree structure. Another term
for Decision Tree is Classification and Regression Tree
(CART)[35] [36] [37] which is a decision tree. Decision
trees can convert data into decision trees and decision
rules. The benefits of DT are its ability to break down
complex decision-making processes into simpler ones, so
that decision-makers better interpret problem solutions.

J-COSINE, Vol. 5, No. 2, Desember 2021

Accredited Sinta-3 by RISTEKDIKTI Decree No. 28/E/KPT/2019

E-ISSN:2541-0806

P-ISSN:2540-8895

http://jcosine.if.unram.ac.id/ 151

Making a Decision Tree model[38] [39] is like drawing an
inverted tree where the Root Node is in the top position.
Internal Node that has 1 input and at least 2 outputs. Leaf
Node is the final Node, has 1 input and has no output.

G. Multi-Layer Perceptron Classifier
Multi-Layer Perceptron is a classification algorithm that

works by using a deep neural network. This algorithm is
very different from machine learning algorithms based on
statistical science. By using the deep neural network
method, it is expected that the performance of the model is
more accurate, when compared to machine learning.
Figure 2 is the architecture of the Multi-Layer Perceptron
Classifier to complete the classification of the malware
dataset.

Fig. 2. Architecture Multi-Layer Perceptron

IV. PROPOSED METHOD

Fig. 3. Architecture Multi-Layer Perceptron

A. Pipeline 1: Create Dataset
This stage is to create a dataset from Android APK files

that are indicated as malware or Benign. The malware
APK files are downloaded from the University of New
Brunswick. The file has been labeled for types of
malwares. The downloaded file is accommodated to local
storage, then the classification process is carried out and
stored in a similar folder. Next, the Android APK file
extraction feature is carried out using reverse engineering.
Many reverse engineering tools are commonly used. In
this research, reverse engineering uses the JADX module.
The result of the reverse engineering process is some
folders and files AndroidManifest.xml. Files and folders
other than AndroidManifest.xml are deleted, while

AndroidManifest.xml is then parsed to read the
permissions and intent features. The results of the feature
extraction process produce a malware dataset. The next
process is classification using machine learning or deep
learning algorithms.

B. Pipeline 2: Prepare Training Dataset malware
Before training the malware dataset, the prepare stage

is very necessary. To generate a model from a machine
learning or deep learning training process must use a clean
dataset, a good dataset (no null, incorrect data in features).
The dataset must ensure that the contents of the malware
Dataset should not be mixed with the Benign data. If there
is a mixture of malware and Benign, the resulting model
will experience errors and affect the performance of the
model. In addition to the data cleaning process, there are
also engineering features, namely feature analysis and the
most influential features. This process must be carried out
because this process is also very influential on the resulting
model. The next process is to create a uniform dataset, in
the sense that if there are five groups of datasets, then the
dataset must be an unmixed dataset. For example, the
malware APK dataset is of the Ransomware type, then the
Ransomware dataset should not be mixed with the
Riskware APK dataset.

The division of the number of datasets for machine
learning is to divide the 70% training dataset and 30%
testing data. But there is no requirement to do so. There are
also those who share it, 60% training data and 40% testing
data. Sharing datasets for deep learning, training data,
validation data and testing data. Example (Data Training +
Data Validation) = 70%, while testing data is 30%. Cross
validation of datasets or swapping training positions with
testing is also carried out to get the performance model that
will be generated by machine learning or deep learning.

Some of the reasons for this data preparation is done:
1) The data owned is not ideal, there is data that is
missing value. Missing data in the dataset will result in a
declining model for its performance. Filling must be done
so that the dataset becomes intact and good. It is not
permissible to fill in the dataset arbitrarily and an analysis
of the features or dimensions of the appropriate dataset
must be carried out.
2) There are different data formats. To avoid
differences in formats in the feature dataset, it is necessary
to check, validate the dataset and analyze the features of
the dataset.
3) Small dataset or imbalanced dataset from ideal in
terms of quantity. Small datasets are not ideal for machine
learning or deep learning processes to be generated as
models. This makes the model invalid. Synthetic Minority
Over-sampling Technique (SMOTE) is a way to balance
the dataset, if machine learning is done, in order to produce
a good model.

4) The dependent variable and the independent variable
are not clear or have no label.

J-COSINE, Vol. 5, No. 2, Desember 2021

Accredited Sinta-3 by RISTEKDIKTI Decree No. 28/E/KPT/2019

E-ISSN:2541-0806

P-ISSN:2540-8895

http://jcosine.if.unram.ac.id/ 152

C. Pipeline 3: Training and Testing Process
This stage is conducting training on the malware

dataset. Training using the KNN Algorithm, Support
Vector Machine and Decision Tree. The distribution of the
dataset is carried out, the training dataset is 70% and the
testing dataset is 30%. The Multi-Layer Perceptron
Classifier algorithm is also used for this stage. The training
process is also carried out using changes in the position of
the training dataset and testing dataset, which is better
known as cross validation. In this study using 5-fold cross
validation, to get better model accuracy.

Cross Validation (CV) is a method used to evaluate
model performance, where data is separated into two
subsets, namely learning process data and evaluation data.
The model or algorithm is trained by the learning subset
and validated by the validation subset. Furthermore, the
selection of the type of CV can be based on the size of the
dataset. CV K-fold is used because it can reduce
computation time while maintaining the accuracy of the
estimate. 5-fold CV is one of the K-fold CVs used for
selecting the best model because it tends to provide less
biased accuracy estimates. In 5-fold CV, the dataset is
divided into 5 folds of approximately equal size, thus
having 5 subsets of data to evaluate model performance.
For each of these 5 subsets of data, CV will use 4 folds for
training data and 1-fold for testing.

D. Pipeline 4: Prepare New APK data to be tested
At this stage the aim is to add new datasets. If in

performing the classification and new variants of malware
are found, before being entered into the dataset, the data
must be feature extraction. Then retraining is carried out.
The more datasets, the better the classification model in
identifying malware APK.

E. Pipeline 5: Decision Classification Output Label
The last stage aims to produce a classification model

and the model is ready for deployment. Testing the model
before the model is ready for use, aims to anticipate model
errors in identifying Android APK files.

V. EXPERIMENT AND RESULT
In conducting the experiment, using the MacBook Air

2020 hardware with specifications of 8 GB RAM, 256 GB
storage. Using the Python programming language in the
Jupiter Notebook package, the reverse engineer JADX
module made by APKTOOL. In this section, answer
research questions and report experimental results.

A. RQ 1, How to extract malware dataset using
permission feature and intent feature?
This is a much-needed step, where this step generates

a malware dataset. APK files are downloaded and
extracted, reverse engineered and parsed to read feature
permissions and feature intents. The final result of feature
extraction is a malware dataset. Following are the feature-
feature permissions of the malware dataset:

TABLE I. Normal Feature Permission

ACCESS_ALL_DOWNLOAD
S

ACCESS_CACHE_FILESYST
EM

BLUETOOTH_SHARE ACCESS_CHECKIN_PROPE
RTIES

ACCESS_DOWNLOAD_MA
NAGER_ADVANCED

ACCESS_DRM_CERTIFICA
TES

ACCESS_NETWORK_COND
ITIONS

ACCESS_NOTIFICATIONS

ACCESS_NETWORK_STAT
E

ACCESS_NOTIFICATION_P
OLICY

ACCESS_PDB_STATE BLUETOOTH_PRIVILEGED

BIND_DEVICE_ADMIN BIND_CARRIER_SERVICES

BIND_CARRIER_MESSAGI
NG_SERVICE

BIND_APPWIDGET

BIND_ACCESSIBILITY_SER
VICE

BROADCAST_PHONE_ACC
OUNT_REGISTRATION

BROADCAST_SMS BIND_ACCESSIBILITY_SER
VICE

CAPTURE_AUDIO_OUTPUT CALL_PRIVILEGED

CONFIGURE_WIFI_DISPLA
Y

CHANGE_CONFIGURATIO
N

INSTALL_GRANT_RUNTIM
E_PERMISSIONS

INTERNAL_SYSTEM_WIND
OW

INSTALL_LOCATION_PRO
VIDER

INTERACT_ACROSS_USER
S_FULL

GET_PASSWORD KILL_BACKGROUND_PRO
CESSES

INTERNAL_SYSTEM_WIND
OW

INSTALL_GRANT_RUNTIM
E_PERMISSIONS

MANAGE_DOCUMENTS MANAGE_ACCOUNTS

HARDWARE_TEST INSTALL_LOCATION_PRO
VIDER

FORCE_STOP_PACKAGES MANAGE_APP_TOKENS

INSTALL_PACKAGES KILL_UID

TABLE II. Normal Feature Intent

ACTION_POWER_CONNE
CTED

ACTION_POWER_DISCONNE
CTED

ACTION_SHUTDOWN AIRPLANE_MODE

BATTERY_CHANGED BATTERY_LOW

BATTERY_OKAY BOOT_COMPLETED

CAMERA_BUTTON CONFIGURATION_CHANGED

CREATE_SHORTCUT DATE_CHANGED

DEVICE_STORAGE_LOW DEVICE_STORAGE_OK

DOCK_EVENT DREAMING_STARTED

J-COSINE, Vol. 5, No. 2, Desember 2021

Accredited Sinta-3 by RISTEKDIKTI Decree No. 28/E/KPT/2019

E-ISSN:2541-0806

P-ISSN:2540-8895

http://jcosine.if.unram.ac.id/ 153

DREAMING_STOPPED EXTERNAL_APPLICATIONS_
AVAILABLE

EXTERNAL_APPLICATIO
NS_UNAVAILABLE

FETCH_VOICEMAIL

GTALK_CONNECTED GTALK_DISCONNECTED

HEADSET_PLUG INPUT_METHOD_CHANGED

LOCALE_CHANGED MANAGE_PACKAGE_STORA
GE

MAIN MEDIA_BAD_REMOVAL

MEDIA_BUTTON MEDIA_CHECKING

MEDIA_MOUNTED MEDIA_REMOVED

PACKAGE_ADDED PACKAGE_DATA_CLEARED

PACKAGE_CHANGED MEDIA_SCANNER_SCAN_FIL
E

PACKAGE_INSTALL PACKAGE_NEEDS_VERIFICA
TION

PACKAGE_REMOVED PROVIDER_CHANGED

ACTION_TIME_CHANGED SIM_STATE_CHANGED

SENT_SMS_ACTION ACTION_EXTERNAL_APPLIC
ATIONS_AVAILABLE

Furthermore, the permission features and intent
features are trained with machine learning and deep
learning to produce models with the best accuracy. In
performing the extraction of the Android APK dataset
consisting of the Benign APK and the malware APK that
have been labeled, it takes 24 hours of processing for 2
weeks. Table II and Table III are features generated by the
feature extraction process from malware and benign
android APK files. The total of downloaded APK files =
14,170 APKs. Where the APK file process is reverse
engineered with the Jadx APKTOOL module. The results
of reverse engineering produce the source code of the
APK. Next take the AndroidManifest.xml file to parse the
permission features and intent features. Feature parse
results are stored into the malware dataset. The malware
dataset has permission and intent features of 1178 columns
or dimensions. Table II shows some of the permission
features and Table III shows some of the intent features.

B. RQ 2, What is the percentage of application of the K-
Nearest Neighbor algorithm, Support Vector Machine
algorithm and Decision Tree algorithm?

Definition
TP = True Positive.
TN = True Negative.
FP = False Positive.
FN = False Negative.

Accuracy is the ratio of correct predictions (positive
and negative) to the entire dataset. Accuracy and answer
the question “What percentage of Android APK files
correctly predicted Malware and Benign from the entire
dataset of Android APK files”. Accuracy = (TP + TN) /
(TP + FP + FN + TN). Accuracy can be seen in table IV.

TABLE III. ACCURACY FOR ALGORITHM MACHINE LEARNING

Algorithm
Accuracy

600 APK 7000
APK

14170
APK

K Nearest Neighbour (KNN) 88% 86.8% 88%
Decision Tree (DT) 100% 89% 91,3%
Support Vector Machine
(SVM)

97% 90% 91%

Precision is the ratio of a positive correct prediction

compared to the overall positive predicted outcome.
Precision answers the question “What percentage of
Android APK files are Malware correct from the total
dataset that Malware predicts?”. Precision = (TP) / (TP +
FP). Precision can be seen in Table V.

TABLE IV. PRESSION FOR ALGORITHM MACHINE LEARNING

Algorithm
Precision

600
APK

7000
APK

14170
APK

K-Nearest Neighbour (KNN) 88% 85.6% 88%
Decision Tree (DT) 100% 89.4% 91.8%
Support Vector Machine (SVM) 96.5% 90% 91.4%

F1 Score is a weighted comparison of the average precision
and recall. F1 Score = 2 * (Recall * Precision) / (Recall +
Precision). F1-Score can be seen in Table VI.

TABLE V. F1-SCORE FOR ALGORITHM MACHINE LEARNING

Algorithm
F1-Score

600
APK

7000
APK

14170
APK

K-Nearest Neighbour (KNN) 88% 85.2% 88%
Decision Tree (DT) 100% 88.6% 91.2%
Support Vector Machine (SVM) 96.7% 89.4% 90.4%

Recall is the ratio of true positive predictions compared

to the total number of true positive data. Recall answers the
question "What percentage of Android APK files are
predicted to be malware compared to all students who are
actually malware". Recall = (TP) / (TP + FN). Recall can
be seen in Table VII.

TABLE VI. RECALL FOR ALGORITHM MACHINE LEARNING

Algorithm
Recall

600
APK

7000
APK

14170
APK

K-Nearest Neighbour
(KNN)

88% 85.2% 88%

Decision Tree (DT) 100% 88.8% 91.2%
Support Vector Machine
(SVM)

97% 89.4 90.6%

There is a decrease in performance for the model
generated from the K-Nearest Neighbor algorithm, Support
Vector Machine and Decision Tree. Table IV, Accuracy of
KNN, Support Vector and Decision Tree classifier
decreased when using a larger dataset. This is because the
three algorithms are suitable for use if the dataset is small.
The larger the size of the training dataset, the lower the
accuracy. Table V Precision decreased if the classifier was

J-COSINE, Vol. 5, No. 2, Desember 2021

Accredited Sinta-3 by RISTEKDIKTI Decree No. 28/E/KPT/2019

E-ISSN:2541-0806

P-ISSN:2540-8895

http://jcosine.if.unram.ac.id/ 154

carried out with the three non-neural network algorithms.
Table VI F1-Score experienced a decrease in the
classification of large datasets and Table VII Recall
decreases if the dataset is large. In this study, the use of a
large dataset is not suitable when using a large dataset, and
it is tried to train the dataset using a Neural Network.

C. RQ 3, What is the percent increase in accuracy with
the implementation of the Multi-Layer Perceptron
algorithm?

TABLE VII. PERFORMANCE FOR ALGORITHM DEEP LEARNING

Performance
Dataset

600
APK

7000 APK 14170
APK

Accuracy 99% 100% 100%
Precision 99% 100% 100%
Recall 99% 100% 100%
F1-Score 99% 100% 100%

The results of the Multi-Layer Perceptron classification

experiment show that performance increases with
increasing datasets. The more the number of datasets, the
better for performance. Experiment from dataset 600 APK
= 99%, dataset 7000 APK = 100% and dataset 14170 APK
= 100%.

Fig. 4. ROC Multi-Class Multi-Layer Perceptron Algorithm

Receiver Operating Characteristic (ROC) is a plot of
True Positive Rate (TPR) on the y-axis and False Positive
Rate (FPR) on the x-axis. Where, True Positive Rate =
True Positives / (True Positives + False Negatives) and
False Positive Rate = False Positives / (False Positives +
True Negatives). It can be seen that the ROC and Area
Under Curve scores show significant values.

In Figure 4, the ROC of the model results from the
Artificial Neural Network Classifier from the malware
dataset. ROC (Receiver Operating Characteristics) is a
performance measurement tool for classification problems
in determining the threshold of the model. Malware
Banking APK APK file label 0, symbolized in light blue.
APK file Malware Ransomware APK label 1, symbolized
in orange. APK file Malware Riskware APK label 2,
symbolized in blue. Malware SMS APK file APK label 3,

symbolized in light blue. APK file Malware Benign APK
label 4, symbolized in orange. The y-axis represents the
True Positive Rate (sensitivity), the x-axis represents the
False Positive Rate (Specificity). Figure 4 shows the
higher the True Positive Rate (sensitivity) and the smaller
the False Positive Rate, the better the threshold. The
optimistic Area Under Curve (AUC) value from the
Artificial Neural Network validation results shows a value
of = 1. This shows that the accuracy results obtained are in
the very good category.

D. RQ 4, Is it effective to perform malware analysis using
static methods?
Using this static method does not require running the

malware into an isolated or controlled environment. The
malware APK file is only extracted, then stored into the
malware dataset. The dataset is classified using the
classification method and then the model is tested with the
extracted malware dataset. The results are effective for
detecting the Android APK file is infected with malware
or normal. The static method is actually simple and works
effectively in malware detection.

VI. CONCLUTION
Based on the results of experiments conducted in this

study, it can be concluded that classification using machine
learning produces good accuracy on the K-Nearest
Neighbor algorithm, Support Vector Machine and Decision
Tree. However, the use of larger datasets causes a decrease
in accuracy. This factor causes the use of deep learning in
training datasets in order to produce high accuracy on large
datasets. The accuracy of the K-Nearest Neighbor
algorithm on average = 88%, if using the 14170 APK
dataset. Average Support Vector Machine accuracy =
90.5%, when using the 14170 APK dataset. Average
Decision Tree accuracy = 90.8%, when using the 14170
APK dataset. Accuracy using deep learning with Multi-
Layer Perceptron results in 100% accuracy, using the
14170 APK dataset.

REFERENCES
[1] A. Ghasempour, N. Fazlida, M. Sani, and O. J. Abari,

“Permission Extraction Framework for Android
Malware Detection,” vol. 11, no. 11, pp. 463–475, 2020.

[2] O. N. Elayan and A. M. Mustafa, “Android malware
detection using deep learning,” Procedia Comput. Sci.,
vol. 184, no. 2019, pp. 847–852, 2021, doi:
10.1016/j.procs.2021.03.106.

[3] S. R. T. Mat, M. F. A. Razak, M. N. M. Kahar, J. M.
Arif, and A. Firdaus, “A Bayesian probability model for
Android malware detection,” ICT Express, no. xxxx,
2021, doi: 10.1016/j.icte.2021.09.003.

[4] M. Qiao, A. H. Sung, and Q. Liu, “Merging permission
and api features for android malware detection,” Proc. -
2016 5th IIAI Int. Congr. Adv. Appl. Informatics, IIAI-
AAI 2016, pp. 566–571, 2016, doi: 10.1109/IIAI-
AAI.2016.237.

[5] A. K. Singh, C. D. Jaidhar, and M. A. A. Kumara,
“Experimental analysis of Android malware detection
based on combinations of permissions and API-calls,”

J-COSINE, Vol. 5, No. 2, Desember 2021

Accredited Sinta-3 by RISTEKDIKTI Decree No. 28/E/KPT/2019

E-ISSN:2541-0806

P-ISSN:2540-8895

http://jcosine.if.unram.ac.id/ 155

J. Comput. Virol. Hacking Tech., vol. 15, no. 3, pp. 209–
218, 2019, doi: 10.1007/s11416-019-00332-z.

[6] M. Shohel Rana, C. Gudla, and A. H. Sung, “Evaluating
machine learning models for android malware detection
- A comparison study,” ACM Int. Conf. Proceeding Ser.,
pp. 17–21, 2018, doi: 10.1145/3301326.3301390.

[7] X. Wang, D. Zhang, X. Su, and W. Li, “Mlifdect:
Android malware detection based on parallel machine
learning and information fusion,” Secur. Commun.
Networks, vol. 2017, 2017, doi: 10.1155/2017/6451260.

[8] H. Fereidooni, M. Conti, D. Yao, and A. Sperduti,
“ANASTASIA: ANdroid mAlware detection using
STatic analySIs of applications,” 2016 8th IFIP Int.
Conf. New Technol. Mobil. Secur. NTMS 2016, 2016,
doi: 10.1109/NTMS.2016.7792435.

[9] A. Feizollah, N. B. Anuar, R. Salleh, G. Suarez-Tangil,
and S. Furnell, “AndroDialysis: Analysis of Android
Intent Effectiveness in Malware Detection,” Comput.
Secur., vol. 65, no. March, pp. 121–134, 2017, doi:
10.1016/j.cose.2016.11.007.

[10] F. Idrees, M. Rajarajan, M. Conti, T. M. Chen, and Y.
Rahulamathavan, “PIndroid: A novel Android malware
detection system using ensemble learning methods,”
Comput. Secur., vol. 68, pp. 36–46, 2017, doi:
10.1016/j.cose.2017.03.011.

[11] A. Abusitta, M. Q. Li, and B. C. M. Fung, “Malware
classification and composition analysis: A survey of
recent developments,” J. Inf. Secur. Appl., vol. 59, no.
April, p. 102828, 2021, doi:
10.1016/j.jisa.2021.102828.

[12] V. Syrris and D. Geneiatakis, “On machine learning
effectiveness for malware detection in Android OS
using static analysis data,” J. Inf. Secur. Appl., vol. 59,
no. May, p. 102794, 2021, doi:
10.1016/j.jisa.2021.102794.

[13] P. Opěla, I. Schindler, P. Kawulok, R. Kawulok, S.
Rusz, and H. Navrátil, “On various multi-layer
perceptron and radial basis function based artificial
neural networks in the process of a hot flow curve
description,” J. Mater. Res. Technol., vol. 14, pp. 1837–
1847, 2021, doi: 10.1016/j.jmrt.2021.07.100.

[14] M. L. Baptista, E. M. Elsa, and K. Goebel, “A self-
organizing map and a normalizing multi-layer
perceptron approach to baselining in prognostics under
dynamic regimes,” Neurocomputing, vol. 456, pp. 268–
287, 2021, doi: 10.1016/j.neucom.2021.05.031.

[15] M. Amin, T. A. Tanveer, M. Tehseen, M. . Khan, F. A.
Khan, and S. Anwar, “Static malware detection and
attribution in android byte-code through an end-to-end
deep system,” Futur. Gener. Comput. Syst., vol. 102, pp.
112–126, 2020, doi: 10.1016/j.future.2019.07.070.

[16] L. Xiong and Y. Yao, “Study on an adaptive thermal
comfort model with K-nearest-neighbors (KNN)
algorithm,” Build. Environ., vol. 202, no. May, p.
108026, 2021, doi: 10.1016/j.buildenv.2021.108026.

[17] D. Sisodia and D. S. Sisodia, “Quad division prototype
selection-based k-nearest neighbor classifier for click
fraud detection from highly skewed user click dataset,”
Eng. Sci. Technol. an Int. J., no. xxxx, 2021, doi:
10.1016/j.jestch.2021.05.015.

[18] A. Shokrzade, M. Ramezani, F. Akhlaghian Tab, and M.

Abdulla Mohammad, “A novel extreme learning
machine based kNN classification method for dealing
with big data,” Expert Syst. Appl., vol. 183, no. May, p.
115293, 2021, doi: 10.1016/j.eswa.2021.115293.

[19] X. Zhu, C. Ying, J. Wang, J. Li, X. Lai, and G. Wang,
“Ensemble of ML-KNN for classification algorithm
recommendation,” Knowledge-Based Syst., vol. 221, p.
106933, 2021, doi: 10.1016/j.knosys.2021.106933.

[20] C. E. A. Bundak, M. A. Abd Rahman, M. K. Abdul
Karim, and N. H. Osman, “Fuzzy rank cluster top k
Euclidean distance and triangle based algorithm for
magnetic field indoor positioning system,” Alexandria
Eng. J., 2021, doi: 10.1016/j.aej.2021.08.073.

[21] R. Taheri, M. Ghahramani, R. Javidan, M. Shojafar, Z.
Pooranian, and M. Conti, “Similarity-based Android
malware detection using Hamming distance of static
binary features,” Futur. Gener. Comput. Syst., vol. 105,
pp. 230–247, 2020, doi: 10.1016/j.future.2019.11.034.

[22] R. Suwanda, Z. Syahputra, and E. M. Zamzami,
“Analysis of Euclidean Distance and Manhattan
Distance in the K-Means Algorithm for Variations
Number of Centroid K,” J. Phys. Conf. Ser., vol. 1566,
no. 1, 2020, doi: 10.1088/1742-6596/1566/1/012058.

[23] S. Zhang, “Cost-sensitive KNN classification,”
Neurocomputing, vol. 391, no. xxxx, pp. 234–242,
2020, doi: 10.1016/j.neucom.2018.11.101.

[24] T. Du, Z. Zhao, Q. Zhu, and L. Tian, “Locating a γ-ray
source using cuboid scintillators and the KNN
algorithm,” Nucl. Instruments Methods Phys. Res. Sect.
A Accel. Spectrometers, Detect. Assoc. Equip., vol. 993,
no. January, 2021, doi: 10.1016/j.nima.2021.165069.

[25] R. M. Arias Velásquez, “Support vector machine and
tree models for oil and Kraft degradation in power
transformers,” Eng. Fail. Anal., vol. 127, no. May,
2021, doi: 10.1016/j.engfailanal.2021.105488.

[26] Y. Arbabi Yazdi, H. Toossian Shandiz, and H.
Gholizadeh Narm, “Stiction detection in control valves
using a support vector machine with a generalized
statistical variable,” ISA Trans., no. xxxx, 2021, doi:
10.1016/j.isatra.2021.07.020.

[27] J. Lesouple, C. Baudoin, M. Spigai, and J. Y. Tourneret,
“How to introduce expert feedback in one-class support
vector machines for anomaly detection?,” Signal
Processing, vol. 188, p. 108197, 2021, doi:
10.1016/j.sigpro.2021.108197.

[28] X. Ju, Y. Tian, D. Liu, and Z. Qi, “Nonparallel
hyperplanes support vector machine for multi-class
classification,” Procedia Comput. Sci., vol. 51, no. 1,
pp. 1574–1582, 2015, doi:
10.1016/j.procs.2015.05.287.

[29] Q. Zhang, H. Wang, and S. W. Yoon, “A 1-norm
regularized linear programming nonparallel hyperplane
support vector machine for binary classification
problems,” Neurocomputing, vol. 376, no. xxxx, pp.
141–152, 2020, doi: 10.1016/j.neucom.2019.09.068.

[30] Z. Zhao, P. Zhong, and Y. Zhao, “Learning SVM with
weighted maximum margin criterion for classification
of imbalanced data,” Math. Comput. Model., vol. 54, no.
3–4, pp. 1093–1099, 2011, doi:
10.1016/j.mcm.2010.11.040.

[31] J. Mariéthoz and S. Bengio, “A kernel trick for
sequences applied to text-independent speaker
verification systems,” Pattern Recognit., vol. 40, no. 8,
pp. 2315–2324, 2007, doi:

10.1016/j.patcog.2007.01.011.
[32] S. F. Hussain, “A novel robust kernel for classifying

high-dimensional data using Support Vector Machines,”
Expert Syst. Appl., vol. 131, pp. 116–131, 2019, doi:

J-COSINE, Vol. 5, No. 2, Desember 2021

Accredited Sinta-3 by RISTEKDIKTI Decree No. 28/E/KPT/2019

E-ISSN:2541-0806

P-ISSN:2540-8895

http://jcosine.if.unram.ac.id/ 156

10.1016/j.eswa.2019.04.037.
[33] X. Huang, A. Maier, J. Hornegger, and J. A. K. Suykens,

“Indefinite kernels in least squares support vector
machines and principal component analysis,” Appl.
Comput. Harmon. Anal., vol. 43, no. 1, pp. 162–172,
2017, doi: 10.1016/j.acha.2016.09.001.

[34] M. Moshkov, “Decision trees based on 1-
consequences,” Discret. Appl. Math., vol. 302, pp. 208–
214, 2021, doi: 10.1016/j.dam.2021.07.017.

[35] V. Gumuskaya, W. van Jaarsveld, R. Dijkman, P.
Grefen, and A. Veenstra, “Integrating stochastic
programs and decision trees in capacitated barge
planning with uncertain container arrivals,” Transp.
Res. Part C Emerg. Technol., vol. 132, no. December
2020, p. 103383, 2021, doi: 10.1016/j.trc.2021.103383.

[36] A. Strzelecka and D. Zawadzka, “Application of
classification and regression tree (CRT) analysis to

identify the agricultural households at risk of financial
exclusion,” Procedia Comput. Sci., vol. 192, pp. 4532–
4541, 2021, doi: 10.1016/j.procs.2021.09.231.

[37] D. H. Lee, S. H. Kim, and K. J. Kim, “Multistage MR-
CART: Multiresponse optimization in a multistage
process using a classification and regression tree
method,” Comput. Ind. Eng., vol. 159, no. May, p.
107513, 2021, doi: 10.1016/j.cie.2021.107513.

[38] M. Li, P. Vanberkel, and X. Zhong, “Predicting
ambulance offload delay using a hybrid decision tree
model,” Socioecon. Plann. Sci., no. July, p. 101146,
2021, doi: 10.1016/j.seps.2021.101146.

[39] W. Gao, Z. Bai, F. Zhu, C. C. Chou, and B. Jiang, “A
study on the cyclist head kinematic responses in
electric-bicycle-to-car accidents using decision-tree
model,” Accid. Anal. Prev., vol. 160, no. May 2020, p.
106305, 2021, doi: 10.1016/j.aap.2021.106305.

J-COSINE, Vol. 5, No. 2, Desember 2021

Accredited Sinta-3 by RISTEKDIKTI Decree No. 28/E/KPT/2019

E-ISSN:2541-0806

P-ISSN:2540-8895

http://jcosine.if.unram.ac.id/ 157

