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Abstract The purpose of this study is to identify Android 

APK files by classifying them using Artificial Neural 
Network (ANN) and Non Neural Network (NNN). The ANN 
is Multi-Layer Perceptron Classifier (MLPC), while the NNN 
are KNN, SVM, Decision Tree, Logistic Regression and Naïve 
Bayes methods. The results show that the performance using 
NNN has decreasing accuracy when training using larger 
datasets. The use of the K-Nearest Neighbor algorithm with 
a dataset of 600 APKs achieves an accuracy of 91.2% and 
dataset of 14170 APKs achieves an accuracy of 88%. The 
using of the Support Vector Machine algorithm with the 600 
APK dataset has an accuracy of 99.1% and the 14170 APK 
dataset has an accuracy of 90.5%. The using of the Decision 
Tree algorithm with the 600 APK dataset has an accuracy of 
99.2%, the 14170 APK dataset has an accuracy of 90.8%. The 
experiment using the Multi-Layer Perceptron Classifier has 
increasing with the 600 APK dataset reaching 99%, the 7000 
APK dataset reaching 100% and the 14170 APK dataset 
reaching 100%. 

Key words: Multi Layer Perceptron Classifier, Artificial 
Neural Network, Non Neural Network, APK Malware 
Android 

I. INTRODUCTION 
Currently, the development of APK malware is 

increasing, along with the number of Package Kit 
Applications (APKs) which are applications that run on the 
Android operating system. So many Androids APKs, 
causing more and more certain parties to attack for 
purposes that are profitable for malware makers. 
Therefore, there are many losses for Android Mobile 
phones that have been infected by malware. From year to 
year the development of malware has increased, for this 
reason this research uses the topic of Android malware.   
Intents are interfaces that connect interactions between 
Activities in an Android APK. In addition, Intents send 
data to other Activities, such as sending data to other 
applications (Gmail, Google Map, etc.). In essence, Intent 
is a mechanism to perform an action and communicate 
between application components. 

Originality: Most of the journals in the literature 
review focus on feature permissions, rarely exploring 
feature intents. An Android APK to activate an action or 
activity calls a component, sends data, requires a feature 
intent. Without feature intents, Android cannot perform 
action functions. Therefore, this research focuses on 

feature permissions and feature intents. Malware 
classification has been carried out by applying machine 
learning, such as the use of the K-Nearest Neighbor 
algorithm, Support Vector Machine and Decision Tree. 
The average classification results are good, but if you use 
a large dataset, the classification performance decreases. 
Then the experiment was carried out by applying a deep 
learning algorithm, namely Multi-Layer Perceptron. Some 
experimental results continue to increase in accuracy with 
the increasing number of datasets. 

The aim of this study is to identify Android APK files 
by classifying Android APK files using the Multi-Layer 
Perceptron Classifier. The main contribution of this paper 
is to improve the accuracy of malware classification 
performance by applying the Multi-Layer Perceptron 
Classifier algorithm. 

Some research questions in this study: 
RQ 1, How to extract malware dataset using permission 
feature and intent feature? 
RQ 2, What is the percentage of application of the K-NN 
algorithm, Support Vector Machine and Decision Tree? 
RQ 3, What is the percent increase in accuracy with the 
implementation of the Multi-Layer Perceptron algorithm? 
RQ 4, Is it effective to perform malware analysis using 
static methods? 

This article is organized as follows: Section 2 presents 
related work on several articles related to the Classification 
of Android malware. Section 3 describes the methodology 
used. Section 4 describe Propose Method. Section 5 
presents the results of the experiments that have been 
carried out. Section 6 includes a summary of the paper. 

II. RELATED WORK 
In this study, we compare with previous research that 

discusses the Android malware APK. The attackers 
created malware using a new method of targeting victims 
of Android mobile phones. Several studies have used 
effective tools to carry out the malware detection process 
as accurately as possible. 

Table I shows a lot of research using extract on feature 
permissions, system calls, API Calls, Net Info, but still very 
rarely uses feature intent. This feature intent is an addition 
to the research, in addition to using feature permissions. 
This research uses feature permission and feature intent. 
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TABEL I. LITERATURE REVIEW 

Work Features Classifier Data Performance 
[1] Permission SVM 

 
10000 

 
 

 

Precision 
98.20% 
Recall 95.80% 
F-measure 
96.96% 

25000 Precision 
97.16% 
Recall 93.75% 
F-measure 
95.42% 

60000 Precision 
95.17% 
Recall 92.86% 
F-measure 
94.00% 

DT 10000 
 

 
 

Precision 
98.99% 
Recall 96.10% 
F-measure 
97.53% 

25000 Precision 
96.10% 
Recall 93.20% 
F-measure 
94.68% 

60000 Precision 
92.11% 
Recall 91.10% 
F-measure 
91.60% 

[2]. Application 
Programmi
ng Interface 
(API) calls, 
Permissions 

SVM 347 
benign, 

365 
mal 

96.2% 

KNN 347 
benign, 

365 
mal 

97.2% 

DT 347 
benign, 

365 
mal 

96.6% 

RF 347 
benign, 

365 
mal 

97.8% 

Naïve 
Bayes 

347 
benign, 

365 
mal 

93.9% 

GRU 347 
benign, 

365 
mal 

98.2% 

[3] Permission Chi-Square 
& Naïve 
Bayes 

5000 
mal 

Drebin 
and 

5000 
benign 
(Andro

zo) 

91.1% 

[4] API & 
Permissions 

RF  
ANN 

5000 
benign, 

1260 
mal 

94% 
94% 

Work Features Classifier Data Performance 
[5] Permissions

, APIs  
SVM 1500 

benign, 
1500 
mal 

99.6% 

[6] APIs, Net 
Info, etc.   

SVM  
K-NN ERT  

5560 
benign, 

5560 
mal 

90.4% 
 90.47% 
93.66% 

[7] APIs, Net 
Info 

Ensemble  4403 
benign, 

3982 
mal 

99.7% 

[8] APIs, Net 
Info 

NB  
RF       

K-NN     
XGBOOST 

DL  

11187 
benign, 
18677 

mal 

87% 
96% 
94% 
97%  
96% 

[9] Permissions 
& Intents  

BN  
SVM  
DT  
 LR  

1846 
benign, 

5560 
mal 

95.5%   
94%    
83%    
91% 

[10] Permissions 
& Intents  

Ensemble  445 
benign, 

1246 
mal 

99.8% 

III. METODOLOGY 
In this section, the researcher discusses malware 

analysis and classification [11] research methodology. 
Performing malware analysis there are three analyzes, 
namely static analysis[12], dynamic analysis and hybrid 
analysis. The use of the malware identification or detection 
method is a supervised learning classification. The 
algorithm used is KNN, Support Vector Machine and 
Decision Tree, as well as Deep Learning Multi-Layer 
Perceptron Classifier[13] [14]. 

A. Static Analysis 
Static analysis [15] is a malware analysis method by 

analyzing source code. Reverse engineering is used to 
obtain the source code file, which converts the executable 
file into a source code file. To analyze the malware APK 
file, for example, the APK file must be reverse engineered. 
Analyzing static malware does not need to run the 
application. Using the JADX module from APKTOOL, to 
do reverse engineering. The source code to be analyzed is 
the AndroidManifest.xml file. This file is then read or 
parse android-permission and android-intent. 
Some purposes for reverse engineering: 
• To know the protocol of a program. For example: 

want to create a command line Instagram client. 
• To find out the API used by a program. For example, 

you want to know how to turn on the camera flash as 
a flashlight. 

• To find security bugs for a program. 
• To find out if a program violates copyright. For 

example, we suspect that a program uses a 
commercial library that we created, without paying 
for a license. 

• For forensic purposes. For example, we want to know 
the data format used by a program. 
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Fig. 1. Architecture Multi-Layer Perceptron 

Figure 1, AndroidManifest.xml file, the result of the 
reverse engineering process. This file will parse the 
permissions and intent features. 

B. Dynamic Analysis 
Malware is a threat to Android, various methods are 

used to analyze malware, one of which is using dynamic 
analysis. Analyzing Android malware with dynamic 
methods aims to understand its behavior and improve the 
ability to detect it. Dynamic analysis also takes an 
analytical approach to analyze Android malware behavior. 
How to perform analysis by running malware code in a 
virtual environment to understand the actual behavior of 
malware. The dynamic analysis method does not examine 
the source code, but runs the malware files in a controlled 
environment, which is called a sandbox. This way the 
behavior of the malware can be analyzed in a controlled 
environment, this is very useful where the malware does 
not spread to other systems. After observing the behavior 
of malware, a log of malware activity is obtained. This log 
will be analyzed. 

C. Hybrid Analysis 
Dynamic malware analysis is a combination of static 
analysis and dynamic analysis, where the analysis runs the 
malware in a controlled environment after that it also 
analyzes the source code. Hybrid model analysis is a 
perfect and complete analysis for analyzing a malware.   

D. K-Nearest Neighbor 
K-Nearest Neighbor (KNN) [16] [17] is a classification 

algorithm using a way to measure the distance, which is 
measured from the k nearest neighbors. This classification 
projects the training dataset in a multidimensional space. 
The space is divided into sections that describe the 
character of the data. Each training data is represented as 
points in a multidimensional space. Where the KNN 
classification[18] [19] process is looking for the point c 
closest to the new (c). The general formula is to find the 
Euclidean distance, Hamming distance, Manhattan 
distance, and Minkowski Distance. 

Euclidean distance [20] is a formula for finding the 
distance between two points in two-dimensional space. 
Hamming distance [21] is a way to find the distance 
between two points which is calculated by the length of the 
binary vector formed by the two points in the binary code 
block. Manhattan Distance [22] is a formula to find the 
distance d between 2 vectors in n dimensional space. 
Minkowski distance is a formula for measuring between 
two points in a normal vector space which is a 
hybridization that generalizes the Euclidean distance and 
Manhattan distance. The K-Nearest Neighbor (KNN) [23] 
[24] algorithm is a classification of objects based on the 
learning data that is closest to the object. Then the 
determination of the K value is carried out. It is determined 
that the K value is odd, after that a vote is carried out on 
the closest distance. Advantages of KNN (K-Nearest 
Neighbor), dataset used for training is very nonlinear and 
easy to implementation. Disadvantages of KNN (K-
Nearest Neighbor): Need to indicate the parameter K 
(number of nearest neighbors). Does not handle missing 
values implicitly. Sensitive to data outliers (outliers). 
Vulnerable to non-informative variables. Vulnerable to 
high dimensionality. The computational cost is quite high, 
because it is necessary to calculate the distance from each 
testing data to the entire training data. 

E. Support Vector Machine 
Support Vector Machine (SVM) was first presented by 

Boser, Guyon and Vapnik in 1992. Support Vector 
Machine is a supported classification algorithm by finding 
the hyperplane with the largest margin. There are three 
main sections in SVM, namely Supervised, Classified and 
Hyperplane with the largest margin. How the Support 
Vector Machine [25] [26] [27] works. Support vectors are 
two closely spaced data that come from different classes or 
groups, these two data will be used as support vectors. 
Hyperplane [28] [29] is the dividing line between support 
vectors. Max Margin[30] is the distance between the 
support vector and the hyperplane, the margin distance 
must be maximum to be able to anticipate the similarity of 
one data to another. For non-linear data, SVM Kernel 
Trick [31] [32] [33] is used by creating new dimensions. 
So that it can create a hyperplane. The advantage of SVM 
is that Supervised is able to control the accuracy of 
classification and Kernel trick is able to classify with non-
linear data. Disadvantages of SVM, not good for large 
amounts of data and Kernel trick is not easy to implement.  

F. Decision Tree 
The Decision Tree [34] [35] algorithm was developed 

by J. Ross Quinlan, in 1975. Decision tree is a popular 
classification method, because it is easy to interpret. 
Predictive model that uses a tree structure. Another term 
for Decision Tree is Classification and Regression Tree 
(CART)[35] [36] [37] which is a decision tree. Decision 
trees can convert data into decision trees and decision 
rules. The benefits of DT are its ability to break down 
complex decision-making processes into simpler ones, so 
that decision-makers better interpret problem solutions. 
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Making a Decision Tree model[38] [39] is like drawing an 
inverted tree where the Root Node is in the top position. 
Internal Node that has 1 input and at least 2 outputs. Leaf 
Node is the final Node, has 1 input and has no output. 

G. Multi-Layer Perceptron Classifier 
Multi-Layer Perceptron is a classification algorithm that 

works by using a deep neural network. This algorithm is 
very different from machine learning algorithms based on 
statistical science. By using the deep neural network 
method, it is expected that the performance of the model is 
more accurate, when compared to machine learning. 
Figure 2 is the architecture of the Multi-Layer Perceptron 
Classifier to complete the classification of the malware 
dataset. 

 
Fig. 2. Architecture Multi-Layer Perceptron 

IV. PROPOSED METHOD 

 
Fig. 3. Architecture Multi-Layer Perceptron 

A. Pipeline 1: Create Dataset 
This stage is to create a dataset from Android APK files 

that are indicated as malware or Benign. The malware 
APK files are downloaded from the University of New 
Brunswick. The file has been labeled for types of 
malwares. The downloaded file is accommodated to local 
storage, then the classification process is carried out and 
stored in a similar folder. Next, the Android APK file 
extraction feature is carried out using reverse engineering. 
Many reverse engineering tools are commonly used. In 
this research, reverse engineering uses the JADX module. 
The result of the reverse engineering process is some 
folders and files AndroidManifest.xml. Files and folders 
other than AndroidManifest.xml are deleted, while 

AndroidManifest.xml is then parsed to read the 
permissions and intent features. The results of the feature 
extraction process produce a malware dataset. The next 
process is classification using machine learning or deep 
learning algorithms. 

B. Pipeline 2: Prepare Training Dataset malware 
Before training the malware dataset, the prepare stage 

is very necessary. To generate a model from a machine 
learning or deep learning training process must use a clean 
dataset, a good dataset (no null, incorrect data in features). 
The dataset must ensure that the contents of the malware 
Dataset should not be mixed with the Benign data. If there 
is a mixture of malware and Benign, the resulting model 
will experience errors and affect the performance of the 
model. In addition to the data cleaning process, there are 
also engineering features, namely feature analysis and the 
most influential features. This process must be carried out 
because this process is also very influential on the resulting 
model. The next process is to create a uniform dataset, in 
the sense that if there are five groups of datasets, then the 
dataset must be an unmixed dataset. For example, the 
malware APK dataset is of the Ransomware type, then the 
Ransomware dataset should not be mixed with the 
Riskware APK dataset. 

The division of the number of datasets for machine 
learning is to divide the 70% training dataset and 30% 
testing data. But there is no requirement to do so. There are 
also those who share it, 60% training data and 40% testing 
data. Sharing datasets for deep learning, training data, 
validation data and testing data. Example (Data Training + 
Data Validation) = 70%, while testing data is 30%. Cross 
validation of datasets or swapping training positions with 
testing is also carried out to get the performance model that 
will be generated by machine learning or deep learning. 

Some of the reasons for this data preparation is done: 
1) The data owned is not ideal, there is data that is 
missing value. Missing data in the dataset will result in a 
declining model for its performance. Filling must be done 
so that the dataset becomes intact and good. It is not 
permissible to fill in the dataset arbitrarily and an analysis 
of the features or dimensions of the appropriate dataset 
must be carried out. 
2) There are different data formats. To avoid 
differences in formats in the feature dataset, it is necessary 
to check, validate the dataset and analyze the features of 
the dataset. 
3) Small dataset or imbalanced dataset from ideal in 
terms of quantity. Small datasets are not ideal for machine 
learning or deep learning processes to be generated as 
models. This makes the model invalid. Synthetic Minority 
Over-sampling Technique (SMOTE) is a way to balance 
the dataset, if machine learning is done, in order to produce 
a good model. 

4) The dependent variable and the independent variable 
are not clear or have no label. 
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C. Pipeline 3: Training and Testing Process 
This stage is conducting training on the malware 

dataset. Training using the KNN Algorithm, Support 
Vector Machine and Decision Tree. The distribution of the 
dataset is carried out, the training dataset is 70% and the 
testing dataset is 30%. The Multi-Layer Perceptron 
Classifier algorithm is also used for this stage. The training 
process is also carried out using changes in the position of 
the training dataset and testing dataset, which is better 
known as cross validation. In this study using 5-fold cross 
validation, to get better model accuracy. 

Cross Validation (CV) is a method used to evaluate 
model performance, where data is separated into two 
subsets, namely learning process data and evaluation data. 
The model or algorithm is trained by the learning subset 
and validated by the validation subset. Furthermore, the 
selection of the type of CV can be based on the size of the 
dataset. CV K-fold is used because it can reduce 
computation time while maintaining the accuracy of the 
estimate. 5-fold CV is one of the K-fold CVs used for 
selecting the best model because it tends to provide less 
biased accuracy estimates. In 5-fold CV, the dataset is 
divided into 5 folds of approximately equal size, thus 
having 5 subsets of data to evaluate model performance. 
For each of these 5 subsets of data, CV will use 4 folds for 
training data and 1-fold for testing. 

D. Pipeline 4: Prepare New APK data to be tested 
At this stage the aim is to add new datasets. If in 

performing the classification and new variants of malware 
are found, before being entered into the dataset, the data 
must be feature extraction. Then retraining is carried out. 
The more datasets, the better the classification model in 
identifying malware APK. 

E. Pipeline 5: Decision Classification Output Label 
The last stage aims to produce a classification model 

and the model is ready for deployment. Testing the model 
before the model is ready for use, aims to anticipate model 
errors in identifying Android APK files. 

V. EXPERIMENT AND RESULT 
In conducting the experiment, using the MacBook Air 

2020 hardware with specifications of 8 GB RAM, 256 GB 
storage. Using the Python programming language in the 
Jupiter Notebook package, the reverse engineer JADX 
module made by APKTOOL. In this section, answer 
research questions and report experimental results. 

A. RQ 1, How to extract malware dataset using 
permission feature and intent feature? 
This is a much-needed step, where this step generates 

a malware dataset. APK files are downloaded and 
extracted, reverse engineered and parsed to read feature 
permissions and feature intents. The final result of feature 
extraction is a malware dataset. Following are the feature-
feature permissions of the malware dataset: 

TABLE I. Normal Feature Permission 

ACCESS_ALL_DOWNLOAD
S 

ACCESS_CACHE_FILESYST
EM 

BLUETOOTH_SHARE ACCESS_CHECKIN_PROPE
RTIES 

ACCESS_DOWNLOAD_MA
NAGER_ADVANCED  

ACCESS_DRM_CERTIFICA
TES 

ACCESS_NETWORK_COND
ITIONS 

ACCESS_NOTIFICATIONS
  

ACCESS_NETWORK_STAT
E 

ACCESS_NOTIFICATION_P
OLICY 

ACCESS_PDB_STATE BLUETOOTH_PRIVILEGED 

BIND_DEVICE_ADMIN BIND_CARRIER_SERVICES 

BIND_CARRIER_MESSAGI
NG_SERVICE 

BIND_APPWIDGET 

BIND_ACCESSIBILITY_SER
VICE 

BROADCAST_PHONE_ACC
OUNT_REGISTRATION 

BROADCAST_SMS BIND_ACCESSIBILITY_SER
VICE 

CAPTURE_AUDIO_OUTPUT CALL_PRIVILEGED 

CONFIGURE_WIFI_DISPLA
Y 

CHANGE_CONFIGURATIO
N 

INSTALL_GRANT_RUNTIM
E_PERMISSIONS 

INTERNAL_SYSTEM_WIND
OW 

INSTALL_LOCATION_PRO
VIDER 

INTERACT_ACROSS_USER
S_FULL 

GET_PASSWORD KILL_BACKGROUND_PRO
CESSES 

INTERNAL_SYSTEM_WIND
OW 

INSTALL_GRANT_RUNTIM
E_PERMISSIONS 

MANAGE_DOCUMENTS  MANAGE_ACCOUNTS 

HARDWARE_TEST INSTALL_LOCATION_PRO
VIDER 

FORCE_STOP_PACKAGES MANAGE_APP_TOKENS 

INSTALL_PACKAGES KILL_UID 

TABLE II.  Normal Feature Intent 

ACTION_POWER_CONNE
CTED 

ACTION_POWER_DISCONNE
CTED 

ACTION_SHUTDOWN AIRPLANE_MODE 

BATTERY_CHANGED BATTERY_LOW 

BATTERY_OKAY BOOT_COMPLETED 

CAMERA_BUTTON CONFIGURATION_CHANGED 

CREATE_SHORTCUT DATE_CHANGED 

DEVICE_STORAGE_LOW DEVICE_STORAGE_OK 

DOCK_EVENT DREAMING_STARTED 
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DREAMING_STOPPED EXTERNAL_APPLICATIONS_
AVAILABLE 

EXTERNAL_APPLICATIO
NS_UNAVAILABLE 

FETCH_VOICEMAIL 

GTALK_CONNECTED GTALK_DISCONNECTED 

HEADSET_PLUG INPUT_METHOD_CHANGED 

LOCALE_CHANGED MANAGE_PACKAGE_STORA
GE 

MAIN MEDIA_BAD_REMOVAL 

MEDIA_BUTTON MEDIA_CHECKING 

MEDIA_MOUNTED MEDIA_REMOVED 

PACKAGE_ADDED PACKAGE_DATA_CLEARED 

PACKAGE_CHANGED MEDIA_SCANNER_SCAN_FIL
E 

PACKAGE_INSTALL PACKAGE_NEEDS_VERIFICA
TION 

PACKAGE_REMOVED PROVIDER_CHANGED 

ACTION_TIME_CHANGED SIM_STATE_CHANGED 

SENT_SMS_ACTION ACTION_EXTERNAL_APPLIC
ATIONS_AVAILABLE 

Furthermore, the permission features and intent 
features are trained with machine learning and deep 
learning to produce models with the best accuracy. In 
performing the extraction of the Android APK dataset 
consisting of the Benign APK and the malware APK that 
have been labeled, it takes 24 hours of processing for 2 
weeks. Table II and Table III are features generated by the 
feature extraction process from malware and benign 
android APK files. The total of downloaded APK files = 
14,170 APKs. Where the APK file process is reverse 
engineered with the Jadx APKTOOL module. The results 
of reverse engineering produce the source code of the 
APK. Next take the AndroidManifest.xml file to parse the 
permission features and intent features. Feature parse 
results are stored into the malware dataset. The malware 
dataset has permission and intent features of 1178 columns 
or dimensions. Table II shows some of the permission 
features and Table III shows some of the intent features. 

B. RQ 2, What is the percentage of application of the K-
Nearest Neighbor algorithm, Support Vector Machine 
algorithm and Decision Tree algorithm? 

Definition 
TP = True Positive. 
TN = True Negative. 
FP = False Positive. 
FN = False Negative. 

Accuracy is the ratio of correct predictions (positive 
and negative) to the entire dataset. Accuracy and answer 
the question “What percentage of Android APK files 
correctly predicted Malware and Benign from the entire 
dataset of Android APK files”. Accuracy = (TP + TN) / 
(TP + FP + FN + TN). Accuracy can be seen in table IV. 

 

TABLE III. ACCURACY FOR ALGORITHM MACHINE LEARNING 

Algorithm 
Accuracy 

600 APK 7000 
APK 

14170 
APK 

K Nearest Neighbour (KNN) 88% 86.8% 88% 
Decision Tree (DT) 100% 89% 91,3% 
Support Vector Machine 
(SVM) 

97% 90% 91% 

 
Precision is the ratio of a positive correct prediction 

compared to the overall positive predicted outcome. 
Precision answers the question “What percentage of 
Android APK files are Malware correct from the total 
dataset that Malware predicts?”. Precision = (TP) / (TP + 
FP). Precision can be seen in Table V. 

TABLE IV. PRESSION FOR ALGORITHM MACHINE LEARNING 

Algorithm 
Precision 

600 
APK 

7000 
APK 

14170 
APK 

K-Nearest Neighbour (KNN) 88%   85.6%     88%     
Decision Tree (DT) 100% 89.4% 91.8% 
Support Vector Machine (SVM) 96.5% 90% 91.4% 

 
F1 Score is a weighted comparison of the average precision 
and recall. F1 Score = 2 * (Recall * Precision) / (Recall + 
Precision). F1-Score can be seen in Table VI. 

TABLE V. F1-SCORE FOR ALGORITHM MACHINE LEARNING 

Algorithm 
F1-Score 

600 
APK 

7000 
APK 

14170 
APK 

K-Nearest Neighbour (KNN) 88%   85.2%     88%     
Decision Tree (DT) 100% 88.6% 91.2% 
Support Vector Machine (SVM) 96.7% 89.4% 90.4% 

 
Recall is the ratio of true positive predictions compared 

to the total number of true positive data. Recall answers the 
question "What percentage of Android APK files are 
predicted to be malware compared to all students who are 
actually malware". Recall = (TP) / (TP + FN). Recall can 
be seen in Table VII. 

TABLE VI. RECALL FOR ALGORITHM MACHINE LEARNING 

Algorithm 
Recall 

600 
APK 

7000 
APK 

14170 
APK 

K-Nearest Neighbour 
(KNN) 

88%   85.2%     88%     

Decision Tree (DT) 100% 88.8% 91.2% 
Support Vector Machine 
(SVM) 

97% 89.4 90.6% 

 

There is a decrease in performance for the model 
generated from the K-Nearest Neighbor algorithm, Support 
Vector Machine and Decision Tree. Table IV, Accuracy of 
KNN, Support Vector and Decision Tree classifier 
decreased when using a larger dataset. This is because the 
three algorithms are suitable for use if the dataset is small. 
The larger the size of the training dataset, the lower the 
accuracy. Table V Precision decreased if the classifier was 
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carried out with the three non-neural network algorithms. 
Table VI F1-Score experienced a decrease in the 
classification of large datasets and Table VII Recall 
decreases if the dataset is large. In this study, the use of a 
large dataset is not suitable when using a large dataset, and 
it is tried to train the dataset using a Neural Network. 

C. RQ 3, What is the percent increase in accuracy with 
the implementation of the Multi-Layer Perceptron 
algorithm? 

TABLE VII. PERFORMANCE FOR ALGORITHM DEEP LEARNING 

Performance 
Dataset 

600 
APK 

7000 APK 14170 
APK 

Accuracy 99%   100%     100%     
Precision 99% 100% 100% 
Recall 99% 100% 100% 
F1-Score 99% 100% 100% 

 
The results of the Multi-Layer Perceptron classification 

experiment show that performance increases with 
increasing datasets. The more the number of datasets, the 
better for performance. Experiment from dataset 600 APK 
= 99%, dataset 7000 APK = 100% and dataset 14170 APK 
= 100%.  
 

 
Fig. 4. ROC Multi-Class Multi-Layer Perceptron Algorithm 

Receiver Operating Characteristic (ROC) is a plot of 
True Positive Rate (TPR) on the y-axis and False Positive 
Rate (FPR) on the x-axis. Where, True Positive Rate = 
True Positives / (True Positives + False Negatives) and 
False Positive Rate = False Positives / (False Positives + 
True Negatives). It can be seen that the ROC and Area 
Under Curve scores show significant values.  

In Figure 4, the ROC of the model results from the 
Artificial Neural Network Classifier from the malware 
dataset. ROC (Receiver Operating Characteristics) is a 
performance measurement tool for classification problems 
in determining the threshold of the model. Malware 
Banking APK APK file label 0, symbolized in light blue. 
APK file Malware Ransomware APK label 1, symbolized 
in orange. APK file Malware Riskware APK label 2, 
symbolized in blue. Malware SMS APK file APK label 3, 

symbolized in light blue. APK file Malware Benign APK 
label 4, symbolized in orange. The y-axis represents the 
True Positive Rate (sensitivity), the x-axis represents the 
False Positive Rate (Specificity). Figure 4 shows the 
higher the True Positive Rate (sensitivity) and the smaller 
the False Positive Rate, the better the threshold. The 
optimistic Area Under Curve (AUC) value from the 
Artificial Neural Network validation results shows a value 
of = 1. This shows that the accuracy results obtained are in 
the very good category. 

D. RQ 4, Is it effective to perform malware analysis using 
static methods? 
Using this static method does not require running the 

malware into an isolated or controlled environment. The 
malware APK file is only extracted, then stored into the 
malware dataset. The dataset is classified using the 
classification method and then the model is tested with the 
extracted malware dataset. The results are effective for 
detecting the Android APK file is infected with malware 
or normal. The static method is actually simple and works 
effectively in malware detection. 

VI. CONCLUTION 
Based on the results of experiments conducted in this 

study, it can be concluded that classification using machine 
learning produces good accuracy on the K-Nearest 
Neighbor algorithm, Support Vector Machine and Decision 
Tree. However, the use of larger datasets causes a decrease 
in accuracy. This factor causes the use of deep learning in 
training datasets in order to produce high accuracy on large 
datasets. The accuracy of the K-Nearest Neighbor 
algorithm on average = 88%, if using the 14170 APK 
dataset. Average Support Vector Machine accuracy = 
90.5%, when using the 14170 APK dataset. Average 
Decision Tree accuracy = 90.8%, when using the 14170 
APK dataset. Accuracy using deep learning with Multi-
Layer Perceptron results in 100% accuracy, using the 
14170 APK dataset. 
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