

Enhancing Robot Autonomy: Path Planning via
Hand-Drawn Sketches and Computer Vision

Integration

Mohamedalmogtaba Abdelrahman*, Mietra Anggara
Mechanical Engineering Dept, Sumbawa University of Technology

Sumbawa, Indonesia
Email: mo.mo.mojtaba.01@gmail.com, mietra.anggara@gmail.com

*Corresponding Author

Abstract This investigation delves into an advanced
method for enhancing robot autonomy by integrating hand-
drawn sketches with computer vision systems to optimize
route planning effectively. The procedure starts with the
capture of image data, which is then processed through
multiple stages until the sketches are turned into exact
coordinates that guide a robot. Canny edge detection, a
specific computer vision technique, is employed to detect the
edges of the drawn lines, facilitating precise and dependable
navigation for autonomous robot operations. Initially, the
image is subjected to noise reduction and edge enhancement
before converting the sketch lines into Cartesian coordinates.
This step is succeeded by point filtering and ordering to
ascertain accurate path adherence by the robot, with no
coordinates overlooked. Scale adjustments are also made to
match digital image coordinates with the real-world setting,
thereby improving the robot’s interaction based on the
received visual inputs. The program has been tested in
Robotic Operating System 2 (ROS) using MoveIt2 and also
in RoboDK software, where it was used to verify the results.
It is important to note that path planning, which focuses on
determining an optimal route from start to finish, is a subset
of motion planning, which also considers the dynamics and
kinematics of the robot's movement along that route.

Keywords--robot autonomy, path planning, computer
vision, robotic arm, image processing

I. INTRODUCTION
The robot is a machine programmed by a computer,

capable of executing a series of commands or complex
tasks automatically, often requiring precision or speed.
The twentieth century marks the beginning of the modern
era of robots, characterized by the development of the first
industrial robots in the 1950s. The field of robotics has
witnessed rapid advancement driven by technological
developments in electronics and computers, leading to
artificial intelligence. This has enhanced the efficiency,
intelligence, and capability of robots to perform
increasingly complex tasks[1].

Robots have contributed to various fields. In industry,
robotic arms have automated repetitive tasks, improving
the efficiency and accuracy of final products. They are
used in assembly and production lines, enabling the

manufacture of large quantities of specific products
through several robotic arms working together, as seen in
automobile assembly plants. Robots are also employed in
metal painting, welding, and industrial machinery, and in
automating the transportation of pieces across different
parts of factories using mobile robots.

Nowadays, service robots tailored to aid humans have
become widespread, integrating into daily routines in areas
such as cleaning, security, education, entertainment, and
more. Examples include robotic vacuum cleaners, drones,
and self-driving vehicles used for transportation and
delivery services[2].

The advent of robots offers numerous advantages but
also poses societal challenges. Questions arise regarding
job prospects, mechanization, and the replacement of
human labor. Ethical issues concerning safety and
confidentiality also emerge with the increasing prevalence
of robots in society.

Motion is a fundamental characteristic of all industrial
and service robots. Therefore, motion planning is crucial,
involving the determination of a series of valid
configurations for the robot to move from its current
position to the desired goal while avoiding obstacles. This
process comprises two main elements: path planning and
trajectory planning. Path planning focuses on finding a
feasible path from the robot's initial configuration to the
target configuration, considering surrounding obstacles
and manufacturing constraints. Trajectory planning
involves creating a smooth and feasible path along the
planned trajectory, taking into account dynamic
constraints such as speed and acceleration[3].

Our research introduces a new and rapid method for
path planning using paper sketching through computer
vision technology. A person draws on a sheet of specific
dimensions (square in our case), then takes a picture of this
sheet for image processing to extract the coordinate points
that constitute the drawn path. The image undergoes three
stages of processing: identifying the paper boundaries and
cropping excess edges, detecting lines and removing noise
to obtain a black and white result where the white part
represents the path for the robot arm.

J-COSINE (Journal of Computer Science and Informatics Engineering)

Vol. 8, No. 2, December 2024

Accredited Sinta-4 by RISTEKDIKTI Decree No. 79/E/KPT/2023

E-ISSN:2541-0806

P-ISSN:2540-8895

http://jcosine.if.unram.ac.id/ 101

https://issn.lipi.go.id/terbit/detail/1473904380
https://issn.lipi.go.id/terbit/detail/1446087842

In the second stage of image processing, the drawn
path is converted into a set of points by selecting the
central region of the drawn line's thickness. This process
adjusts the number of points to balance detail and
efficiency.

The third stage involves determining the order of these
points based on their appearance, starting from the nearest
point to the robot's initial position. The X and Y
coordinates are then extracted (Z-coordinate remains
stable, though future work may use depth cameras for 3D
processing). These coordinates are scaled to match the real
working environment, followed by inverse kinematics to
calculate joint movements for the robot.

WE used RoboDK software to test and verify the
system responsible for the robot's movement. The results
of these tests are discussed in the Discussion section,
highlighting the system's effectiveness and potential
improvements.

In the following sections, WE will review three
published works on robots and motion planning. WE will
also review techniques for integrating robots with
computer vision for various tasks. Subsequently, WE will
detail Our methodology, present Our results, and discuss
possible avenues for future development and practical
applications of this method.

II. LITERATURE REVIEW
 Significant breakthroughs in robotics have been

achieved through the integration of computer vision. This
advancement enhances robots' perception and interaction
with their surroundings, leading to improved overall
performance. With computer vision, robots can process
visual information to perform functions such as
navigation, object recognition, and interaction within their
environment. The adaptable framework provided by
modern robotic control systems further enhances
communication and control, resulting in smarter and more
efficient robotic platforms. The combination of computer
vision with these control systems opens opportunities for
revolutionary developments in robotics technology.

Current researches reflects these advancements and
highlights various innovative approaches:

Ahmed Abdulsahib's[4] research focuses on self-
directing mobile work machines with articulated frame
steering (AFS) for path following and motion control,
aiming to eliminate human intervention in environments
like mines and construction sites. Abdulsahib's method
uses a ROS2-based path-following control system that
generates machine velocities and converts them into
commands. This approach assumes vehicles follow an
imaginary point moving along a path, akin to Reza
Ghabcheloo’s algorithms[5]. The system was tested
against a modified pure pursuit technique from ROS2
navigation, demonstrating practicality in improving path
following in heavy-duty autonomous vehicles.

Peng Zhou’s[6] research aims to augment robotic arc
welding using point cloud models to overcome the
limitations of older methods. Zhou's solution incorporates

advanced techniques such as seam detection and tracking,
adapting to changes in the working environment. Using
hand signals, 3D model reconstruction, and de-noising
techniques, the system produces reliable welding plans for
different joint types and positions. While effective for
complex seam patterns, this method requires a
sophisticated setup due to its reliance on point cloud
mining.

Nazar Kais AL-Karkhi’s[7] study explores intelligent
robotic welding through computer vision technology,
focusing on precise welding line edge detection to ensure
accurate positioning at the start of the welding process.
The research employs image processing techniques,
including edge detection and top-hat transformation
algorithms, alongside the adaptive neuro-fuzzy inference
system (ANFIS) to control the robot's kinematics. The
results indicate satisfactory accuracy in tracking the
welding path, with ANFIS effectively predicting the robot
arm's movements.

In contrast to the aforementioned methods, our study
introduces a rapid path planning method using computer
vision to extract coordinates from a 2D sketch. This
approach involves photographing a sketched course,
processing the image to identify boundaries and detect
lines, and transforming these lines into point sets that form
a route. These points are then ordered and scaled for
inverse kinematics-based robot movement control. Our
method addresses gaps in previous research by offering a
simpler, more intuitive solution for dynamic path
planning, enhancing flexibility and adaptability in various
environmental contexts.

Our experimental setup employs both ROS2 MoveIt
and RoboDK software to test and verify the effectiveness
of our approach. ROS2 MoveIt facilitates motion planning
and trajectory control for our robotic arm, allowing us to
simulate and refine the movement paths generated from
the computer vision algorithm. RoboDK software
provides a platform to validate these paths in a virtual
environment, ensuring the accuracy and feasibility of the
planned trajectories before real-world application.

The following sections will provide a comprehensive
review of these studies, detail our methodology, present
the results obtained from using both ROS2 MoveIt and
RoboDK, and discuss potential future developments and
practical applications of our method. By integrating these
advanced tools, our research demonstrates significant
improvements in path planning efficiency and robot
autonomy.

III. METHODOLOGY
Before delving into the specifics of our computer vision

system, it's crucial to understand the foundational
principles and recent advancements in this field. Computer
vision, operating within the sphere of artificial
intelligence, intends to replicate human perception in
comprehending visual world intricacies. Humans
effortlessly identify elements in their three-dimensional
surroundings like types of cars and recognize individuals

J-COSINE (Journal of Computer Science and Informatics Engineering)

Vol. 8, No. 2, December 2024

Accredited Sinta-4 by RISTEKDIKTI Decree No. 79/E/KPT/2023

E-ISSN:2541-0806

P-ISSN:2540-8895

http://jcosine.if.unram.ac.id/ 102

https://issn.lipi.go.id/terbit/detail/1473904380
https://issn.lipi.go.id/terbit/detail/1446087842

simply by glancing at them. Significant advancements
have occurred in computer vision concerning the
reconstruction of the shape and appearance of three-
dimensional objects from images, the creation of precise
models, and the utilization of techniques for tracking
objects. At present, computer vision is applied in optical
character recognition (OCR), machine inspection, and
medical imaging. Nonetheless, attaining a level of image
interpretation similar to human perception continues to
present notable challenges. Nevertheless, through the
utilization of mathematical algorithms and strategies of
deep learning, computer vision systems can extract
valuable insights from visual data, offering substantial
advantages across various industries, including healthcare,
manufacturing, and security[8].

 The world of robots has been totally revolutionized by
recent advances in computer vision technology. Robots
can be described as machines that are independent and able
to carry out tasks according to a definition from the
Cambridge Workshop. This definition does not include
human-operated robots, which stresses out the necessity
for autonomy and interaction with the environment.
Previously, robotics concentrated on autonomous abilities
of robots achieved through developing control algorithms
to help in completing tasks. These algorithms range from
basic wall-following techniques to more complex ones
such as path planning and learning algorithms.
Nevertheless, if a robot cannot perceive a task or its
surrounding then it becomes difficult to ascertain if it can
accomplish this task autonomously. This problem has led
to growing interest in robotic perception enabling them to
acquire information about their surroundings through
observing similar to what people do. To elaborate further
on interacting with the environment, real task completion
by a robot is only possible when it touches tangible things
in order that bring about an end-goal situation. It dives into
the area of robotic manipulation, which shares borders
with AI planning and relies heavily on computer vision
techniques[9], [10].

Our computer vision system undergoes four distinct
stages from image capture to processing and converting
the drawing into a path with coordinates usable by the
robot. During the development stages of this system, we
drew three different paths on paper to test the software in
various scenarios. We selected square sheets measuring
3x3 inches to represent a miniature version of the robot's
designated workspace.

Fig 1. Image Processing Workflow

A. Image Processing

The first stage of the program begins with a Python
script designed to remove noise from the image and
convert the edges of the drawn line on the paper. This is
achieved through a series of steps, which can be
summarized as follows:

1) Reading and Resizing Image:

The algorithm begins by reading the input image and
then resizing it to a fixed size of 480x480 pixels. This
resizing step ensures consistent processing and
manageable computational complexity by standardizing
the input size, making subsequent analysis and
processing more efficient and uniform.
2) Converting an Image to Grayscale:

A colored input image is converted into a grayscale
image. The image gets reduced to one intensity channel,
making the subsequent processing steps simpler by
eliminating color information and emphasizing variance
of light intensity. This simplification is vital as it enables
ease in analyzing and processing the picture, thus aiding
extraction of necessary features relevant for later stages
in computer vision workflow.
3) Initialization of Parameters:

Default values are set for edge detection and image
processing, including:
• Low and High Thresholds: These parameters are

crucial for Canny edge detection[11]. Pixels with
gradient values lower than the low threshold are
discarded, those greater than the high threshold
are considered strong edges, and pixels with
gradient values between the two thresholds are
regarded as weak edges unless they connect to
strong edges.

• Blur Kernel Size: This parameter determines the
size of the Gaussian blur kernel[12]. Gaussian
blur smooths an image by averaging pixel values
within a specific neighborhood, with the kernel
size controlling the amount of smoothing applied.

• Morph Kernel Size: This parameter determines
the size of the kernel used for morphological
operations[13] such as dilation and erosion.
These operations manipulate the shapes and
structures of objects in an image, with the kernel

J-COSINE (Journal of Computer Science and Informatics Engineering)

Vol. 8, No. 2, December 2024

Accredited Sinta-4 by RISTEKDIKTI Decree No. 79/E/KPT/2023

E-ISSN:2541-0806

P-ISSN:2540-8895

http://jcosine.if.unram.ac.id/ 103

https://issn.lipi.go.id/terbit/detail/1473904380
https://issn.lipi.go.id/terbit/detail/1446087842

size affecting the magnitude of the morphological
operation.

• Merge Loops: This parameter deatermines the
size of the kernel used in the morphological
operation to merge closed loops. Closed loops in
edges can occur due to noise or imperfections in
the image, and merging these loops helps obtain
cleaner edge maps.

B. Convert Drawn Line into Points

After image processing, the program proceeds to the
second stage, converting the drawn line into a set of
Cartesian coordinates (X, Y) points. These points will be
used in plotting the robot's path through inverse kinematics
equations.

Fig 2. gaussian blur and Morphological

1) Thresholding:

This step isolates the white curve in the image. The
function `cv2.threshold` takes a grayscale image, a
threshold value (240 in this case), a maximum value
(255), and a threshold type (`cv2.THRESH_BINARY`).
It transforms the grayscale image into a binary image
where pixels with intensity values higher than 240 are
set to white (255), and those below this threshold are set
to black (0). The output is a binary image.

2) Finding Contours:

function `cv2.findContours` is used to obtain the
contours that represent the boundary of the white area in
the binary image. It takes the binary image, a contour
retrieval mode (`cv2.RETR_EXTERNAL` to retrieve
only external contours), and a contour approximation
method (`cv2.CHAIN_APPROX_SIMPLE` to
compress horizontal, vertical, and diagonal segments
and leave only their end points). The output is a list of
contours found in Figure 3.

Fig 3. Original Image to Contour

3) Merging Close Points:

 The function `merge_close_points` processes points
within each contour to merge those in close proximity. The
parameter `merge_var` determines the distance at which
points are considered close enough to be merged. This
function iterates through all points in each contour and
groups together points that are close, effectively reducing
the number of points and ensuring a clean visualization.

4) Drawing Points:

Circles are drawn at the locations of the merged points
on a blank canvas. A blank image is initialized to have a
black background with the same dimensions as the original
image. The function `cv2.circle` is then used to draw a
circle at each point's location, taking parameters for the
image, the point's coordinates, the radius of the circle, the
color (in this case, green `(0, 255, 0)`), and the thickness
of the circle. The result is an image with circles
representing all the available points, approximating the
initial curve.

C. Point Filtering and Ordering

After converting the line into a set of points, the
program proceeds to the Point Filtering and Ordering
stage. This stage involves extracting the coordinates of
these points in the necessary order for the robot to move
along the drawn path without bypassing any point or
starting from a random point. The points are handled as
follows:

1) find_top_left_point(points):

This function identifies the top-left-most point from
a list of points. It takes a list of points as input and uses
a sorting mechanism that prioritizes the y-coordinate
and then the x-coordinate to find the top-left point. This
step is crucial for establishing a consistent starting point
for reordering the points.

2) find_nearest_point(reference_point, points):

This function calculates the nearest point to a given
reference point. It takes a reference point and a list of
points, using the Euclidean distance formula to find the
closest point. This is vital for sequential reordering,
ensuring that each subsequent point is the nearest to the
current point.

3) filter_points(points, min_distance=5):

This function filters out points that are too close to
each other, with a default minimum distance parameter
set to 5 units. It takes a list of points and an optional
minimum distance value, removing points that fall
within this distance from each other. This step reduces
noise from the point detection process, ensuring that the
reordering process works with distinct, relevant points.

This stage culminates in obtaining an array containing the
coordinates of all points constituting the desired path.
These coordinates are scaled according to the image
processing steps, requiring a magnification scale

J-COSINE (Journal of Computer Science and Informatics Engineering)

Vol. 8, No. 2, December 2024

Accredited Sinta-4 by RISTEKDIKTI Decree No. 79/E/KPT/2023

E-ISSN:2541-0806

P-ISSN:2540-8895

http://jcosine.if.unram.ac.id/ 104

https://issn.lipi.go.id/terbit/detail/1473904380
https://issn.lipi.go.id/terbit/detail/1446087842

adjustment based on the dimensions of the workpiece
targeted for robot operation.

Fig 4. Converted Line and Ordering Points

D. Scale Adjustment Phase in Path Planning

By carefully calibrating the scale and appropriately
mapping the coordinates, tools that operate in physical
space (like robotic arms) can accurately interact with
targets recognized through digital imaging. The function
‘map_pixels_to_mm’ converts coordinates from a digital
image's pixel-based system to a physical coordinate
system measured in millimeters. This translation is crucial
for applications where precise physical positioning based
on image data is required, such as in robotic arm
manipulation or precisely targeting areas in an automated
inspection system.

The computational procedures employed to obtain path
coordinates on the required spatial scale can be elucidated
as follows:

!"##$%&"'($ = 	 + !"#$%&	()*$+!"#
()*$+!$%	&()*$+!"#

, ×
(/(0#(0,"- − /(0#(0,()) + /(0#(0,()

(1)

• 4*(-%# 5*(-%#		: are the pixel coordinates.

• 4(,._,()	, 4(,._,"- and 5(,._,()	, 5(,._,"-:
are represent the dimensions of the image

utilized, which were 480x480 pixels. So, in our

case 4(,._,() = 0 ,	4(,._,"-	0	123	and same for
y.

• 44565+_+5*	, 44565+_65++5, , and
54565+_+5*	, 54565+_65++5, : These four values
represent the coordinates specific to the
workspace of the robotic arm, where the upper-
left edge and the lower-right edge are utilized to
match them with the dimensions of the image
later according to the following equation:

After obtaining the coordinates of the points for the
robot, an equation is needed to undertake the task of
transferring the robot's motion between one point and
another. This is where the interpolation equation comes
into play.

The interpolation formula plays a crucial role in
smoothly transitioning between different robot positions.

It helps ensure that the robot moves seamlessly from one
point to another, improving overall motion quality.
Without interpolation, sudden shifts in posture or
alignment could lead to jerky or unstable movements.
Additionally, interpolation helps prevent kinematic
singularities, which are specific robot configurations that
can cause control issues. By allowing for gradual changes
in joint angles, interpolation aids in avoiding these
problematic scenarios. Moreover, interpolation is essential
for effective path planning, controlling the speed of
movement between positions within safe limits. By
adjusting the pace and acceleration of the robot's motions,
interpolation minimizes mechanical stress on the robot's
components, reducing the risk of damage. Furthermore,
interpolation provides detailed control over the robot's
motion profile, enabling precise movements crucial for
tasks such as assembly lines or pick-and-place operations.

The interpolation equation works by calculating
intermediate poses between two given poses of the robot
using this equation:

890$:!$%8"0$;/<$  =  <0":0;/<$  ×

>(<0$#< − 8) × <0$#?8@$A + $9%;/<$ ×
(8 × <0$#?8@$)

(2)

Where ‘i’ iterates from 0 to steps. The stepSize is
calculated as

!.#
$%&'$.

IV. RESULTS AND DISCUSSION
The image processing system effectively transformed

a drawn line into Cartesian coordinates, which were then
used to guide a robotic arm along the corresponding path.
Initially, the input image was read and resized to a standard
size of 480x480 pixels to ensure consistent processing.
The image was then converted to grayscale, simplifying
the analysis by emphasizing light intensity variance.
Default parameters for edge detection were set, enhancing
edge detection and noise reduction. The resulting binary
image highlighted the edges of the drawn line, facilitating
further processing stages.

In the next stage, the binary image was thresholded to
isolate the white curve. Contours representing the
boundary of the white area were found, and points in close
proximity within each contour were merged to reduce the
number of points and ensure clean visualization. Circles
were drawn at the merged points' locations on a blank
canvas, creating an image that approximated the initial
curve with distinct points. The final set of Cartesian
coordinates was scaled to match the robot's workspace
dimensions, ensuring accurate physical representation of
the path.
The shape and form of this image processing
implementation were intentionally chosen to test the
resilience of the system. The path was selected with
several curves and different line widths so as to evaluate
how well program could handle imperfections such as
noise or irregularities in the drawn line. We, therefore,

J-COSINE (Journal of Computer Science and Informatics Engineering)

Vol. 8, No. 2, December 2024

Accredited Sinta-4 by RISTEKDIKTI Decree No. 79/E/KPT/2023

E-ISSN:2541-0806

P-ISSN:2540-8895

http://jcosine.if.unram.ac.id/ 105

https://issn.lipi.go.id/terbit/detail/1473904380
https://issn.lipi.go.id/terbit/detail/1446087842

wanted to establish if the algorithm was successful when
it came to admitting real-life imperfect inputs which
ensure that it is reliable in a number of circumstances.

1) ROS2 and Moveit:

For ROS2 testing, we employed a KUKA robotic arm
and scaled the coordinates to fit the robot's workspace.
Using a ROS2 action server, we implemented the
coordinates and executed the movement commands. A
C++ script utilizing the MoveIt interface[14] facilitated
precise movement of the robotic arm. The
`move_to_position` function set joint values and generated
a motion planning plan using the MoveGroupInterface,
ensuring smooth and efficient motion planning and
execution. The ROS2 framework provided robust real-
time communication and control, confirming the system's
ability to translate visual data into accurate robotic actions.
This integration demonstrated the feasibility of our
approach, with results visualized in Figure 5.

Fig 5. Ros2 Implementation

2) RoboDK:

In RoboDK testing, we simulated the robotic arm's
movements using a Python script and the RoboDK Python
API. The script mapped image coordinates to the robot's
coordinate system, interpolated motions between points,
and controlled the UR10 robotic arm. The
`interpolate_motion` function calculated intermediate
poses, ensuring smooth transitions between start and end
positions. This virtual testing validated the planned
trajectories' accuracy and feasibility, with the setup
illustrated in Figure 6. This testing phase confirmed the
effectiveness of our approach in both virtual and physical
environments, providing a comprehensive assessment of
the system's capabilities.

Fig 6. Robodk Implementation

3) Comparison of ROS2 and RoboDK

ROS2 is a robust software framework designed for
handling complex, real-time robotics applications. It
excels in environments that require advanced motion
planning, real-time communication, and integration with
various sensors and actuators. In practical
implementations, it has been shown to be effective in
managing complex tasks and dynamic scenarios due to its
modular architecture and extensive libraries of ROS2. This
system’s wide adoption in both industry and research
shows how flexible it can be since it was developed for use
case high performance use where precise control and real
time are important.

Contrastingly, RoboDK specializes simulation and
offline programming for robotic systems. An intuitive
interface is provided by the company that allows virtual
testing as well as validation of robot motions before they
are physically deployed. RoboDK is easy to use for motion
planning and trajectory optimization especially in
educational setups or prototyping contexts. However,
while not very suitable for real-time applications
compared with ROS2, RoboDK continues to be an
excellent tool for validating and refining robot trajectories
thereby conferring significant merit on simulation-based
exercises at early-stage development.

For our system, ROS2 appears to be better option
because of its versatility as well as ease of integration with
custom control boards like ESP32. The modularity and
many hardware components that ROS 2 supports make it
applicable in the context of university projects and
experimental setups. Because it can easily be paired up
with custom controllers, such flexibility is desirable when
developing new systems for trials. In contrast, RoboDK
mostly connects to particular robot controller boards by
providing native compatibility with a range of leading
brands like ABB, FANUC, KUKA and Universal Robots.
Although RoboDK excels in integrating these established
controllers together into one cohesive whole, it does not
naturally support consumer boards such as ESP 32. Even
though some solutions may be found to connect RoboDK
with non-standard controllers, the built-in adaptability and
multiple device compatibility offered by ROS 2 are much

J-COSINE (Journal of Computer Science and Informatics Engineering)

Vol. 8, No. 2, December 2024

Accredited Sinta-4 by RISTEKDIKTI Decree No. 79/E/KPT/2023

E-ISSN:2541-0806

P-ISSN:2540-8895

http://jcosine.if.unram.ac.id/ 106

https://issn.lipi.go.id/terbit/detail/1473904380
https://issn.lipi.go.id/terbit/detail/1446087842

more in line with the requirements and objectives of our
system.

4) Image Processing Results

The image processing results effectively isolated and
converted the drawn line into a set of Cartesian
coordinates. This robust approach ensured that the actual
path was accurately captured for further analysis. To
enhance the visualization and interpretation of the
processing pipeline, several improvements are
recommended.

Firstly, incorporating color-coded points before and
after scaling would significantly enhance the clarity of the
transformation process. Using different colors to represent
the original and scaled coordinates can provide immediate
visual feedback on the accuracy of the scaling operation.
For example, plotting the original coordinates in blue and
the scaled coordinates in red would allow for a clear
comparison between the initial and transformed data.

Additionally, overlaying the processed image with the
original image can help verify that the points accurately
follow the drawn line. This overlay can be further
enhanced by adding labels or markers to indicate key
points, such as the start and end of the path. This would
not only improve visual verification but also help in
identifying any discrepancies between the path planned
and the actual path.

To further refine the image processing results, using
dynamic visualization tools can offer interactive
exploration of the processed image and coordinates.
Implementing features like sliders to adjust threshold
values and kernel sizes in real-time can assist in fine-
tuning the image processing parameters for optimal
results. This interactive approach can be invaluable in
adjusting parameters to achieve the best possible fit
between the drawn line and the processed path.

Lastly, integrating these visualizations into a unified
interface, where users can view the raw image, processed
image, and the final coordinates, will facilitate a
comprehensive understanding and debugging of the image
processing pipeline. Such an interface would not only
provide a clearer picture of the data but also improve the
accuracy and reliability of the robotic path planning by
ensuring that all steps of the image processing and
coordinate transformation are thoroughly validated and
refined.

By implementing these enhancements, the
visualization and interpretation of the processed image and
coordinate scaling can be significantly improved, leading
to more accurate and reliable robotic path planning.

5) Analysis of Path Accuracy and Efficiency

In the evaluation of different point groups used for path
planning, we focused on assessing fit accuracy to
understand how well the generated paths align with the
actual paths defined by binary images. Fit accuracy is a
critical metric for determining the precision of a generated
trajectory and its adherence to the desired path.

Fig 7. Drawn Paths vs. Robot Paths: Accuracy and Coverage

Comparison.

To quantify the fit accuracy, we employed the following
methodology:

1. Nearest Distance Calculation: For each
generated point (4(, 5() along the robot's path, we
compute the Euclidean distance to each actual
point (4(, 5() from the binary image path:

%(7 = B>4(− 47A
8
+ >5(− 57A

8
(3)

Here, %(7 represents the distance between the 8+9
generated point and the C+9 actual point. This step
involves determining how close each generated
point is to any actual point on the true path.

2. Minimum Distance for Each Generated Point:
For each generated point 4(, 5(we select the
minimum distance to any actual point:

%8<0"9D$<(=	!897%(7 (4)

This ensures that we are measuring the shortest
distance between each generated point and the
closest actual point on the path.

3. Average Fit Accuracy: The final fit accuracy is
obtained by averaging these minimum distances
across all generated points:

E80	FDD(:"D5 = 	
1
H
I%8<0"9D$<(

:

(0;

(5)

Where H denotes the total number of generated
points. This average value reflects how well the
entire set of generated points matches the actual
path.

a) Analysis of Results

J-COSINE (Journal of Computer Science and Informatics Engineering)

Vol. 8, No. 2, December 2024

Accredited Sinta-4 by RISTEKDIKTI Decree No. 79/E/KPT/2023

E-ISSN:2541-0806

P-ISSN:2540-8895

http://jcosine.if.unram.ac.id/ 107

https://issn.lipi.go.id/terbit/detail/1473904380
https://issn.lipi.go.id/terbit/detail/1446087842

Fig 8. Time Taken and Fit Accuracy for Each Group.

The results of our experiments highlight the impact of
the number of points on the fit accuracy and the overall
performance of the path planning system. We analyzed
four different groups with varying numbers of points:

• Group 1: This group, consisting of 46 points,

yielded a fit accuracy of 1.06 mm and took 7.87
seconds to complete the path. The relatively high
number of points provided a good balance
between accuracy and execution time.

• Group 2: With 26 points, this group achieved a fit

accuracy of 1.29 mm and a total execution time of
4.23 seconds. Although it had fewer points
compared to Group 1, resulting in slightly lower
accuracy, it completed the path more quickly.

• Group 3: Featuring only 16 points, this group had

a fit accuracy of 1.46 mm and the shortest
execution time of 2.54 seconds. The reduced
number of points led to less accurate path
generation, reflecting a trade-off between path
detail and speed.

• Group 4: This group used 64 points, the highest

number of points tested, achieving the best fit
accuracy of 0.98 mm. However, it also had the
longest execution time at 10.68 seconds. The
increased number of points allowed for finer
resolution and more precise alignment with the
actual path but required more processing time.

From these results, it is clear that increasing the

number of points generally improves fit accuracy by
providing a more detailed representation of the path.
Group 4's superior accuracy demonstrates how additional
points can enhance path fidelity. However, this
improvement in accuracy comes with increased
computational time, as observed with the longer execution
time for Group 4.

Conversely, fewer points, as seen in Group 3, result in
faster execution times but with lower fit accuracy. This
indicates a trade-off between the level of detail captured

and the computational efficiency of the path planning
process.

In summary, the number of points significantly
influences the fit accuracy of the generated path. While a
greater number of points enhances accuracy, it also
increases the time required to complete the path. The
choice of point density should therefore be guided by the
specific needs of the application, balancing the
requirements for precision and efficiency.

V. CONCLUSIONS
In this initiative, we directed efforts towards

constructing a computer vision system capable of
converting visual data into precise instructions for robotic
operations. We began by applying sophisticated
techniques in image processing to refine and decode the
visuals, ensuring that the paths depicted on paper were
replicated accurately by the robotic arm. By translating
these images into coordinate points and adjusting their
scale to the operational parameters of the robot, we
achieved remarkable precision. Our system incorporates
the Robotics Operating System (ROS) and RoboDK, both
known for their effectiveness in managing intricate robotic
functions. Extensive tests and calibration, especially in
regulating the robot arm's motion and path planning,
allowed us to reach an impressive level of accuracy. This
framework not only boosted the functionality of our
robotic system but also expanded our capabilities
concerning accuracy and practical application. The
successful methodologies we adopted have broad
implications for future enhancements in various robotic
systems and are instrumental in advancing autonomous
robotics.

Currently, the program only processes 2D images, thus
ignoring variations in elevation or other three-dimensional
aspects. Our goal is to augment the system with support
for 3D drawing. This enhancement will enable the robot to
navigate and interact within a more complex environment,
elevating its adaptability and operational efficiency. By
addressing these future enhancements, we aim to
significantly broaden the scope and applicability of our
system.

The integration of 3D processing capabilities will
enhance the robot's ability to handle more complex tasks,
making it suitable for a wider range of industrial
applications. As we continue to develop and refine this
system, we anticipate it will play a crucial role in
advancing the field of autonomous robotics, offering
innovative solutions to real-world challenges[15].

REFERENCES

[1] M. T. Mason, “Creation myths: The beginnings of

robotics research,” IEEE Robot Autom Mag, vol.
19, no. 2, pp. 72–77, 2012.

J-COSINE (Journal of Computer Science and Informatics Engineering)

Vol. 8, No. 2, December 2024

Accredited Sinta-4 by RISTEKDIKTI Decree No. 79/E/KPT/2023

E-ISSN:2541-0806

P-ISSN:2540-8895

http://jcosine.if.unram.ac.id/ 108

https://issn.lipi.go.id/terbit/detail/1473904380
https://issn.lipi.go.id/terbit/detail/1446087842

[2] A. Nayyar and A. Kumar, A roadmap to industry
4.0: Smart production, sharp business and
sustainable development. Springer, 2020.

[3] A. Gasparetto, P. Boscariol, A. Lanzutti, and R.
Vidoni, “Path Planning and Trajectory Planning
Algorithms: A General Overview,” Mechanisms
and Machine Science, vol. 29, pp. 3–27, Mar.
2015, doi: 10.1007/978-3-319-14705-5_1.

[4] Abdulsahib Ahmed, “Path Following and Motion
Control for Articulated Frame Steering Mobile
Working Machine Using ROS2,” Master of
Science Thesis, Tampere University, 2023.

[5] R. Ghabcheloo, “Coordinated Path Following,”
PhD thesis, 2007.

[6] P. Zhou, R. Peng, M. Xu, V. Wu, and D. Navarro-
Alarcon, “Path Planning with Automatic Seam
Extraction over Point Cloud Models for Robotic
Arc Welding,” Nov. 2020, [Online]. Available:
http://arxiv.org/abs/2011.11951

[7] N. K. Al-Karkhi, W. T. Abbood, E. A. Khalid, A.
N. Jameel Al-Tamimi, A. A. Kudhair, and O. I.
Abdullah, “Intelligent Robotic Welding Based on
a Computer Vision Technology Approach,”
Computers, vol. 11, no. 11, Nov. 2022, doi:
10.3390/computers11110155.

[8] R. Szeliski, Computer vision: algorithms and
applications. Springer Nature, 2022.

[9] K. Bayoudh, R. Knani, F. Hamdaoui, and A.
Mtibaa, “A survey on deep multimodal learning
for computer vision: advances, trends,

applications, and datasets,” Vis Comput, vol. 38,
no. 8, pp. 2939–2970, 2022.

[10] L. F. P. Oliveira, A. P. Moreira, and M. F. Silva,
“Advances in agriculture robotics: A state-of-the-
art review and challenges ahead,” Robotics, vol.
10, no. 2, p. 52, 2021.

[11] N. D. Lynn, A. I. Sourav, and A. J. Santoso,
“Implementation of Real-Time Edge Detection
Using Canny and Sobel Algorithms,” IOP Conf
Ser Mater Sci Eng, vol. 1096, no. 1, p. 012079,
Mar. 2021, doi: 10.1088/1757-
899x/1096/1/012079.

[12] “OpenCV: Smoothing images.” [Online].
Available:
https://docs.opencv.org/4.x/d4/d13/tutorial_py_fil
tering.html

[13] “OpenCV: Morphological Transformations.”
[Online]. Available:
https://docs.opencv.org/4.x/d9/d61/tutorial_py_m
orphological_ops.html

[14] “Move Group C++ Interface — moveit_tutorials
Kinetic documentation.” [Online]. Available:
http://docs.ros.org/en/kinetic/api/moveit_tutorials
/html/doc/move_group_interface/move_group_in
terface_tutorial.html

[15] R. Alterovitz, S. Koenig, and M. Likhachev,
“Robot planning in the real world: Research
challenges and opportunities,” AI Mag, vol. 37,
no. 2, pp. 76–84, 2016.

J-COSINE (Journal of Computer Science and Informatics Engineering)

Vol. 8, No. 2, December 2024

Accredited Sinta-4 by RISTEKDIKTI Decree No. 79/E/KPT/2023

E-ISSN:2541-0806

P-ISSN:2540-8895

http://jcosine.if.unram.ac.id/ 109

https://issn.lipi.go.id/terbit/detail/1473904380
https://issn.lipi.go.id/terbit/detail/1446087842

