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Abstract This investigation delves into an advanced 
method for enhancing robot autonomy by integrating hand-
drawn sketches with computer vision systems to optimize 
route planning effectively. The procedure starts with the 
capture of image data, which is then processed through 
multiple stages until the sketches are turned into exact 
coordinates that guide a robot. Canny edge detection, a 
specific computer vision technique, is employed to detect the 
edges of the drawn lines, facilitating precise and dependable 
navigation for autonomous robot operations. Initially, the 
image is subjected to noise reduction and edge enhancement 
before converting the sketch lines into Cartesian coordinates. 
This step is succeeded by point filtering and ordering to 
ascertain accurate path adherence by the robot, with no 
coordinates overlooked. Scale adjustments are also made to 
match digital image coordinates with the real-world setting, 
thereby improving the robot’s interaction based on the 
received visual inputs. The program has been tested in 
Robotic Operating System 2 (ROS) using MoveIt2 and also 
in RoboDK software, where it was used to verify the results. 
It is important to note that path planning, which focuses on 
determining an optimal route from start to finish, is a subset 
of motion planning, which also considers the dynamics and 
kinematics of the robot's movement along that route. 

Keywords--robot autonomy, path planning, computer 
vision, robotic arm, image processing 

I. INTRODUCTION 
The robot is a machine programmed by a computer, 

capable of executing a series of commands or complex 
tasks automatically, often requiring precision or speed. 
The twentieth century marks the beginning of the modern 
era of robots, characterized by the development of the first 
industrial robots in the 1950s. The field of robotics has 
witnessed rapid advancement driven by technological 
developments in electronics and computers, leading to 
artificial intelligence. This has enhanced the efficiency, 
intelligence, and capability of robots to perform 
increasingly complex tasks[1]. 

Robots have contributed to various fields. In industry, 
robotic arms have automated repetitive tasks, improving 
the efficiency and accuracy of final products. They are 
used in assembly and production lines, enabling the 

manufacture of large quantities of specific products 
through several robotic arms working together, as seen in 
automobile assembly plants. Robots are also employed in 
metal painting, welding, and industrial machinery, and in 
automating the transportation of pieces across different 
parts of factories using mobile robots. 

Nowadays, service robots tailored to aid humans have 
become widespread, integrating into daily routines in areas 
such as cleaning, security, education, entertainment, and 
more. Examples include robotic vacuum cleaners, drones, 
and self-driving vehicles used for transportation and 
delivery services[2]. 

The advent of robots offers numerous advantages but 
also poses societal challenges. Questions arise regarding 
job prospects, mechanization, and the replacement of 
human labor. Ethical issues concerning safety and 
confidentiality also emerge with the increasing prevalence 
of robots in society. 

Motion is a fundamental characteristic of all industrial 
and service robots. Therefore, motion planning is crucial, 
involving the determination of a series of valid 
configurations for the robot to move from its current 
position to the desired goal while avoiding obstacles. This 
process comprises two main elements: path planning and 
trajectory planning. Path planning focuses on finding a 
feasible path from the robot's initial configuration to the 
target configuration, considering surrounding obstacles 
and manufacturing constraints. Trajectory planning 
involves creating a smooth and feasible path along the 
planned trajectory, taking into account dynamic 
constraints such as speed and acceleration[3]. 

Our research introduces a new and rapid method for 
path planning using paper sketching through computer 
vision technology. A person draws on a sheet of specific 
dimensions (square in our case), then takes a picture of this 
sheet for image processing to extract the coordinate points 
that constitute the drawn path. The image undergoes three 
stages of processing: identifying the paper boundaries and 
cropping excess edges, detecting lines and removing noise 
to obtain a black and white result where the white part 
represents the path for the robot arm. 
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In the second stage of image processing, the drawn 
path is converted into a set of points by selecting the 
central region of the drawn line's thickness. This process 
adjusts the number of points to balance detail and 
efficiency. 

The third stage involves determining the order of these 
points based on their appearance, starting from the nearest 
point to the robot's initial position. The X and Y 
coordinates are then extracted (Z-coordinate remains 
stable, though future work may use depth cameras for 3D 
processing). These coordinates are scaled to match the real 
working environment, followed by inverse kinematics to 
calculate joint movements for the robot. 

WE used RoboDK software to test and verify the 
system responsible for the robot's movement. The results 
of these tests are discussed in the Discussion section, 
highlighting the system's effectiveness and potential 
improvements. 

In the following sections, WE will review three 
published works on robots and motion planning. WE will 
also review techniques for integrating robots with 
computer vision for various tasks. Subsequently, WE will 
detail Our methodology, present Our results, and discuss 
possible avenues for future development and practical 
applications of this method. 

II. LITERATURE REVIEW 
 Significant breakthroughs in robotics have been 

achieved through the integration of computer vision. This 
advancement enhances robots' perception and interaction 
with their surroundings, leading to improved overall 
performance. With computer vision, robots can process 
visual information to perform functions such as 
navigation, object recognition, and interaction within their 
environment. The adaptable framework provided by 
modern robotic control systems further enhances 
communication and control, resulting in smarter and more 
efficient robotic platforms. The combination of computer 
vision with these control systems opens opportunities for 
revolutionary developments in robotics technology. 

Current researches reflects these advancements and 
highlights various innovative approaches: 

Ahmed Abdulsahib's[4] research focuses on self-
directing mobile work machines with articulated frame 
steering (AFS) for path following and motion control, 
aiming to eliminate human intervention in environments 
like mines and construction sites. Abdulsahib's method 
uses a ROS2-based path-following control system that 
generates machine velocities and converts them into 
commands. This approach assumes vehicles follow an 
imaginary point moving along a path, akin to Reza 
Ghabcheloo’s algorithms[5]. The system was tested 
against a modified pure pursuit technique from ROS2 
navigation, demonstrating practicality in improving path 
following in heavy-duty autonomous vehicles. 

Peng Zhou’s[6] research aims to augment robotic arc 
welding using point cloud models to overcome the 
limitations of older methods. Zhou's solution incorporates 

advanced techniques such as seam detection and tracking, 
adapting to changes in the working environment. Using 
hand signals, 3D model reconstruction, and de-noising 
techniques, the system produces reliable welding plans for 
different joint types and positions. While effective for 
complex seam patterns, this method requires a 
sophisticated setup due to its reliance on point cloud 
mining. 

Nazar Kais AL-Karkhi’s[7] study explores intelligent 
robotic welding through computer vision technology, 
focusing on precise welding line edge detection to ensure 
accurate positioning at the start of the welding process. 
The research employs image processing techniques, 
including edge detection and top-hat transformation 
algorithms, alongside the adaptive neuro-fuzzy inference 
system (ANFIS) to control the robot's kinematics. The 
results indicate satisfactory accuracy in tracking the 
welding path, with ANFIS effectively predicting the robot 
arm's movements. 

In contrast to the aforementioned methods, our study 
introduces a rapid path planning method using computer 
vision to extract coordinates from a 2D sketch. This 
approach involves photographing a sketched course, 
processing the image to identify boundaries and detect 
lines, and transforming these lines into point sets that form 
a route. These points are then ordered and scaled for 
inverse kinematics-based robot movement control. Our 
method addresses gaps in previous research by offering a 
simpler, more intuitive solution for dynamic path 
planning, enhancing flexibility and adaptability in various 
environmental contexts. 

Our experimental setup employs both ROS2 MoveIt 
and RoboDK software to test and verify the effectiveness 
of our approach. ROS2 MoveIt facilitates motion planning 
and trajectory control for our robotic arm, allowing us to 
simulate and refine the movement paths generated from 
the computer vision algorithm. RoboDK software 
provides a platform to validate these paths in a virtual 
environment, ensuring the accuracy and feasibility of the 
planned trajectories before real-world application. 

The following sections will provide a comprehensive 
review of these studies, detail our methodology, present 
the results obtained from using both ROS2 MoveIt and 
RoboDK, and discuss potential future developments and 
practical applications of our method. By integrating these 
advanced tools, our research demonstrates significant 
improvements in path planning efficiency and robot 
autonomy. 

III. METHODOLOGY 
Before delving into the specifics of our computer vision 

system, it's crucial to understand the foundational 
principles and recent advancements in this field. Computer 
vision, operating within the sphere of artificial 
intelligence, intends to replicate human perception in 
comprehending visual world intricacies. Humans 
effortlessly identify elements in their three-dimensional 
surroundings like types of cars and recognize individuals 
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simply by glancing at them. Significant advancements 
have occurred in computer vision concerning the 
reconstruction of the shape and appearance of three-
dimensional objects from images, the creation of precise 
models, and the utilization of techniques for tracking 
objects. At present, computer vision is applied in optical 
character recognition (OCR), machine inspection, and 
medical imaging. Nonetheless, attaining a level of image 
interpretation similar to human perception continues to 
present notable challenges. Nevertheless, through the 
utilization of mathematical algorithms and strategies of 
deep learning, computer vision systems can extract 
valuable insights from visual data, offering substantial 
advantages across various industries, including healthcare, 
manufacturing, and security[8]. 

 The world of robots has been totally revolutionized by 
recent advances in computer vision technology. Robots 
can be described as machines that are independent and able 
to carry out tasks according to a definition from the 
Cambridge Workshop. This definition does not include 
human-operated robots, which stresses out the necessity 
for autonomy and interaction with the environment. 
Previously, robotics concentrated on autonomous abilities 
of robots achieved through developing control algorithms 
to help in completing tasks. These algorithms range from 
basic wall-following techniques to more complex ones 
such as path planning and learning algorithms. 
Nevertheless, if a robot cannot perceive a task or its 
surrounding then it becomes difficult to ascertain if it can 
accomplish this task autonomously. This problem has led 
to growing interest in robotic perception enabling them to 
acquire information about their surroundings through 
observing similar to what people do. To elaborate further 
on interacting with the environment, real task completion 
by a robot is only possible when it touches tangible things 
in order that bring about an end-goal situation. It dives into 
the area of robotic manipulation, which shares borders 
with AI planning and relies heavily on computer vision 
techniques[9], [10].  

Our computer vision system undergoes four distinct 
stages from image capture to processing and converting 
the drawing into a path with coordinates usable by the 
robot. During the development stages of this system, we 
drew three different paths on paper to test the software in 
various scenarios. We selected square sheets measuring 
3x3 inches to represent a miniature version of the robot's 
designated workspace. 

 

 
Fig 1. Image Processing Workflow 

A. Image Processing 

The first stage of the program begins with a Python 
script designed to remove noise from the image and 
convert the edges of the drawn line on the paper. This is 
achieved through a series of steps, which can be 
summarized as follows: 

1) Reading and Resizing Image: 

The algorithm begins by reading the input image and 
then resizing it to a fixed size of 480x480 pixels. This 
resizing step ensures consistent processing and 
manageable computational complexity by standardizing 
the input size, making subsequent analysis and 
processing more efficient and uniform. 
2) Converting an Image to Grayscale: 

A colored input image is converted into a grayscale 
image. The image gets reduced to one intensity channel, 
making the subsequent processing steps simpler by 
eliminating color information and emphasizing variance 
of light intensity. This simplification is vital as it enables 
ease in analyzing and processing the picture, thus aiding 
extraction of necessary features relevant for later stages 
in computer vision workflow. 
3) Initialization of Parameters:  

Default values are set for edge detection and image 
processing, including: 
• Low and High Thresholds: These parameters are 

crucial for Canny edge detection[11]. Pixels with 
gradient values lower than the low threshold are 
discarded, those greater than the high threshold 
are considered strong edges, and pixels with 
gradient values between the two thresholds are 
regarded as weak edges unless they connect to 
strong edges. 

• Blur Kernel Size: This parameter determines the 
size of the Gaussian blur kernel[12]. Gaussian 
blur smooths an image by averaging pixel values 
within a specific neighborhood, with the kernel 
size controlling the amount of smoothing applied. 

• Morph Kernel Size: This parameter determines 
the size of the kernel used for morphological 
operations[13] such as dilation and erosion. 
These operations manipulate the shapes and 
structures of objects in an image, with the kernel 
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size affecting the magnitude of the morphological 
operation. 

• Merge Loops: This parameter deatermines the 
size of the kernel used in the morphological 
operation to merge closed loops. Closed loops in 
edges can occur due to noise or imperfections in 
the image, and merging these loops helps obtain 
cleaner edge maps. 

B. Convert Drawn Line into Points 

After image processing, the program proceeds to the 
second stage, converting the drawn line into a set of 
Cartesian coordinates (X, Y) points. These points will be 
used in plotting the robot's path through inverse kinematics 
equations. 

 
Fig 2. gaussian blur and Morphological 

1) Thresholding:  

This step isolates the white curve in the image. The 
function `cv2.threshold` takes a grayscale image, a 
threshold value (240 in this case), a maximum value 
(255), and a threshold type (`cv2.THRESH_BINARY`). 
It transforms the grayscale image into a binary image 
where pixels with intensity values higher than 240 are 
set to white (255), and those below this threshold are set 
to black (0). The output is a binary image. 

2) Finding Contours:  

function `cv2.findContours` is used to obtain the 
contours that represent the boundary of the white area in 
the binary image. It takes the binary image, a contour 
retrieval mode (`cv2.RETR_EXTERNAL` to retrieve 
only external contours), and a contour approximation 
method (`cv2.CHAIN_APPROX_SIMPLE` to 
compress horizontal, vertical, and diagonal segments 
and leave only their end points). The output is a list of 
contours found in Figure 3. 

 
Fig 3. Original Image to Contour 

3) Merging Close Points: 

 The function `merge_close_points` processes points 
within each contour to merge those in close proximity. The 
parameter `merge_var` determines the distance at which 
points are considered close enough to be merged. This 
function iterates through all points in each contour and 
groups together points that are close, effectively reducing 
the number of points and ensuring a clean visualization. 

4) Drawing Points: 

Circles are drawn at the locations of the merged points 
on a blank canvas. A blank image is initialized to have a 
black background with the same dimensions as the original 
image. The function `cv2.circle` is then used to draw a 
circle at each point's location, taking parameters for the 
image, the point's coordinates, the radius of the circle, the 
color (in this case, green `(0, 255, 0)`), and the thickness 
of the circle. The result is an image with circles 
representing all the available points, approximating the 
initial curve. 

C. Point Filtering and Ordering 

After converting the line into a set of points, the 
program proceeds to the Point Filtering and Ordering 
stage. This stage involves extracting the coordinates of 
these points in the necessary order for the robot to move 
along the drawn path without bypassing any point or 
starting from a random point. The points are handled as 
follows: 

1) find_top_left_point(points): 

This function identifies the top-left-most point from 
a list of points. It takes a list of points as input and uses 
a sorting mechanism that prioritizes the y-coordinate 
and then the x-coordinate to find the top-left point. This 
step is crucial for establishing a consistent starting point 
for reordering the points. 

 
2) find_nearest_point(reference_point, points):  

This function calculates the nearest point to a given 
reference point. It takes a reference point and a list of 
points, using the Euclidean distance formula to find the 
closest point. This is vital for sequential reordering, 
ensuring that each subsequent point is the nearest to the 
current point. 

 
3) filter_points(points, min_distance=5):  

This function filters out points that are too close to 
each other, with a default minimum distance parameter 
set to 5 units. It takes a list of points and an optional 
minimum distance value, removing points that fall 
within this distance from each other. This step reduces 
noise from the point detection process, ensuring that the 
reordering process works with distinct, relevant points. 

 
This stage culminates in obtaining an array containing the 
coordinates of all points constituting the desired path. 
These coordinates are scaled according to the image 
processing steps, requiring a magnification scale 
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adjustment based on the dimensions of the workpiece 
targeted for robot operation. 

 
Fig 4. Converted Line and Ordering Points 

D. Scale Adjustment Phase in Path Planning 

By carefully calibrating the scale and appropriately 
mapping the coordinates, tools that operate in physical 
space (like robotic arms) can accurately interact with 
targets recognized through digital imaging. The function 
‘map_pixels_to_mm’ converts coordinates from a digital 
image's pixel-based system to a physical coordinate 
system measured in millimeters. This translation is crucial 
for applications where precise physical positioning based 
on image data is required, such as in robotic arm 
manipulation or precisely targeting areas in an automated 
inspection system. 

The computational procedures employed to obtain path 
coordinates on the required spatial scale can be elucidated 
as follows: 

!"##$%&"'($ = 	 + !"#$%&	()*$+!"#
()*$+!$%	&()*$+!"#

, ×
(/(0#(0,"- − /(0#(0,()) + /(0#(0,()   

(1) 

 
• 4*(-%# 5*(-%#		: are the pixel coordinates. 

• 4(,._,()	, 4(,._,"-  and 5(,._,()	, 5(,._,"-: 
are represent the dimensions of the image 

utilized, which were 480x480 pixels. So, in our 

case 4(,._,() = 0 ,	4(,._,"-	0	123	and same for 
y. 

• 44565+_+5*	, 44565+_65++5, , and 
54565+_+5*	, 54565+_65++5, : These four values 
represent the coordinates specific to the 
workspace of the robotic arm, where the upper-
left edge and the lower-right edge are utilized to 
match them with the dimensions of the image 
later according to the following equation: 

After obtaining the coordinates of the points for the 
robot, an equation is needed to undertake the task of 
transferring the robot's motion between one point and 
another. This is where the interpolation equation comes 
into play. 

The interpolation formula plays a crucial role in 
smoothly transitioning between different robot positions. 

It helps ensure that the robot moves seamlessly from one 
point to another, improving overall motion quality. 
Without interpolation, sudden shifts in posture or 
alignment could lead to jerky or unstable movements. 
Additionally, interpolation helps prevent kinematic 
singularities, which are specific robot configurations that 
can cause control issues. By allowing for gradual changes 
in joint angles, interpolation aids in avoiding these 
problematic scenarios. Moreover, interpolation is essential 
for effective path planning, controlling the speed of 
movement between positions within safe limits. By 
adjusting the pace and acceleration of the robot's motions, 
interpolation minimizes mechanical stress on the robot's 
components, reducing the risk of damage. Furthermore, 
interpolation provides detailed control over the robot's 
motion profile, enabling precise movements crucial for 
tasks such as assembly lines or pick-and-place operations. 

The interpolation equation works by calculating 
intermediate poses between two given poses of the robot 
using this equation: 

 
890$:!$%8"0$;/<$  =  <0":0;/<$  ×

>(<0$#< − 8) × <0$#?8@$A + $9%;/<$ ×
(8 × <0$#?8@$)   

(2) 

 
Where ‘i’ iterates from 0 to steps. The stepSize is 
calculated as 

!.#
$%&'$. 

IV. RESULTS AND DISCUSSION 
The image processing system effectively transformed 

a drawn line into Cartesian coordinates, which were then 
used to guide a robotic arm along the corresponding path. 
Initially, the input image was read and resized to a standard 
size of 480x480 pixels to ensure consistent processing. 
The image was then converted to grayscale, simplifying 
the analysis by emphasizing light intensity variance. 
Default parameters for edge detection were set, enhancing 
edge detection and noise reduction. The resulting binary 
image highlighted the edges of the drawn line, facilitating 
further processing stages. 

In the next stage, the binary image was thresholded to 
isolate the white curve. Contours representing the 
boundary of the white area were found, and points in close 
proximity within each contour were merged to reduce the 
number of points and ensure clean visualization. Circles 
were drawn at the merged points' locations on a blank 
canvas, creating an image that approximated the initial 
curve with distinct points. The final set of Cartesian 
coordinates was scaled to match the robot's workspace 
dimensions, ensuring accurate physical representation of 
the path. 
The shape and form of this image processing 
implementation were intentionally chosen to test the 
resilience of the system. The path was selected with 
several curves and different line widths so as to evaluate 
how well program could handle imperfections such as 
noise or irregularities in the drawn line. We, therefore, 
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wanted to establish if the algorithm was successful when 
it came to admitting real-life imperfect inputs which 
ensure that it is reliable in a number of circumstances. 

1) ROS2 and Moveit: 

For ROS2 testing, we employed a KUKA robotic arm 
and scaled the coordinates to fit the robot's workspace. 
Using a ROS2 action server, we implemented the 
coordinates and executed the movement commands. A 
C++ script utilizing the MoveIt interface[14] facilitated 
precise movement of the robotic arm. The 
`move_to_position` function set joint values and generated 
a motion planning plan using the MoveGroupInterface, 
ensuring smooth and efficient motion planning and 
execution. The ROS2 framework provided robust real-
time communication and control, confirming the system's 
ability to translate visual data into accurate robotic actions. 
This integration demonstrated the feasibility of our 
approach, with results visualized in Figure 5. 

 
Fig 5. Ros2 Implementation 

2) RoboDK: 

In RoboDK testing, we simulated the robotic arm's 
movements using a Python script and the RoboDK Python 
API. The script mapped image coordinates to the robot's 
coordinate system, interpolated motions between points, 
and controlled the UR10 robotic arm. The 
`interpolate_motion` function calculated intermediate 
poses, ensuring smooth transitions between start and end 
positions. This virtual testing validated the planned 
trajectories' accuracy and feasibility, with the setup 
illustrated in Figure 6. This testing phase confirmed the 
effectiveness of our approach in both virtual and physical 
environments, providing a comprehensive assessment of 
the system's capabilities.  

 
Fig 6. Robodk Implementation 

3)  Comparison of ROS2 and RoboDK 

ROS2 is a robust software framework designed for 
handling complex, real-time robotics applications. It 
excels in environments that require advanced motion 
planning, real-time communication, and integration with 
various sensors and actuators. In practical 
implementations, it has been shown to be effective in 
managing complex tasks and dynamic scenarios due to its 
modular architecture and extensive libraries of ROS2. This 
system’s wide adoption in both industry and research 
shows how flexible it can be since it was developed for use 
case high performance use where precise control and real 
time are important. 

Contrastingly, RoboDK specializes simulation and 
offline programming for robotic systems. An intuitive 
interface is provided by the company that allows virtual 
testing as well as validation of robot motions before they 
are physically deployed. RoboDK is easy to use for motion 
planning and trajectory optimization especially in 
educational setups or prototyping contexts. However, 
while not very suitable for real-time applications 
compared with ROS2, RoboDK continues to be an 
excellent tool for validating and refining robot trajectories 
thereby conferring significant merit on simulation-based 
exercises at early-stage development. 

For our system, ROS2 appears to be better option 
because of its versatility as well as ease of integration with 
custom control boards like ESP32. The modularity and 
many hardware components that ROS 2 supports make it 
applicable in the context of university projects and 
experimental setups. Because it can easily be paired up 
with custom controllers, such flexibility is desirable when 
developing new systems for trials. In contrast, RoboDK 
mostly connects to particular robot controller boards by 
providing native compatibility with a range of leading 
brands like ABB, FANUC, KUKA and Universal Robots. 
Although RoboDK excels in integrating these established 
controllers together into one cohesive whole, it does not 
naturally support consumer boards such as ESP 32. Even 
though some solutions may be found to connect RoboDK 
with non-standard controllers, the built-in adaptability and 
multiple device compatibility offered by ROS 2 are much 
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more in line with the requirements and objectives of our 
system. 

4) Image Processing Results 

The image processing results effectively isolated and 
converted the drawn line into a set of Cartesian 
coordinates. This robust approach ensured that the actual 
path was accurately captured for further analysis. To 
enhance the visualization and interpretation of the 
processing pipeline, several improvements are 
recommended. 

Firstly, incorporating color-coded points before and 
after scaling would significantly enhance the clarity of the 
transformation process. Using different colors to represent 
the original and scaled coordinates can provide immediate 
visual feedback on the accuracy of the scaling operation. 
For example, plotting the original coordinates in blue and 
the scaled coordinates in red would allow for a clear 
comparison between the initial and transformed data. 

Additionally, overlaying the processed image with the 
original image can help verify that the points accurately 
follow the drawn line. This overlay can be further 
enhanced by adding labels or markers to indicate key 
points, such as the start and end of the path. This would 
not only improve visual verification but also help in 
identifying any discrepancies between the path planned 
and the actual path. 

To further refine the image processing results, using 
dynamic visualization tools can offer interactive 
exploration of the processed image and coordinates. 
Implementing features like sliders to adjust threshold 
values and kernel sizes in real-time can assist in fine-
tuning the image processing parameters for optimal 
results. This interactive approach can be invaluable in 
adjusting parameters to achieve the best possible fit 
between the drawn line and the processed path. 

Lastly, integrating these visualizations into a unified 
interface, where users can view the raw image, processed 
image, and the final coordinates, will facilitate a 
comprehensive understanding and debugging of the image 
processing pipeline. Such an interface would not only 
provide a clearer picture of the data but also improve the 
accuracy and reliability of the robotic path planning by 
ensuring that all steps of the image processing and 
coordinate transformation are thoroughly validated and 
refined. 

By implementing these enhancements, the 
visualization and interpretation of the processed image and 
coordinate scaling can be significantly improved, leading 
to more accurate and reliable robotic path planning. 

5) Analysis of Path Accuracy and Efficiency 

In the evaluation of different point groups used for path 
planning, we focused on assessing fit accuracy to 
understand how well the generated paths align with the 
actual paths defined by binary images. Fit accuracy is a 
critical metric for determining the precision of a generated 
trajectory and its adherence to the desired path. 
 

 
Fig 7. Drawn Paths vs. Robot Paths: Accuracy and Coverage 

Comparison. 

To quantify the fit accuracy, we employed the following 
methodology: 

1. Nearest Distance Calculation: For each 
generated point (4( 	, 5() along the robot's path, we 
compute the Euclidean distance to each actual 
point (4( 	, 5() from the binary image path: 

%(7 = B>4( − 47A
8
+ >5( − 57A

8  
(3) 

 
Here, %(7 represents the distance between the 8+9 
generated point and the C+9 actual point. This step 
involves determining how close each generated 
point is to any actual point on the true path. 

2. Minimum Distance for Each Generated Point: 
For each generated point 4( 	, 5(  we select the 
minimum distance to any actual point: 

%8<0"9D$<( =	!897%(7  (4) 

This ensures that we are measuring the shortest 
distance between each generated point and the 
closest actual point on the path. 

3. Average Fit Accuracy: The final fit accuracy is 
obtained by averaging these minimum distances 
across all generated points: 

E80	FDD(:"D5 = 	
1
H
I%8<0"9D$<(

:

(0;
 

 
(5) 

Where H denotes the total number of generated 
points. This average value reflects how well the 
entire set of generated points matches the actual 
path. 

a) Analysis of Results 
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Fig 8. Time Taken and Fit Accuracy for Each Group. 

The results of our experiments highlight the impact of 
the number of points on the fit accuracy and the overall 
performance of the path planning system. We analyzed 
four different groups with varying numbers of points: 

 
• Group 1: This group, consisting of 46 points, 

yielded a fit accuracy of 1.06 mm and took 7.87 
seconds to complete the path. The relatively high 
number of points provided a good balance 
between accuracy and execution time. 

 
• Group 2: With 26 points, this group achieved a fit 

accuracy of 1.29 mm and a total execution time of 
4.23 seconds. Although it had fewer points 
compared to Group 1, resulting in slightly lower 
accuracy, it completed the path more quickly. 

 
• Group 3: Featuring only 16 points, this group had 

a fit accuracy of 1.46 mm and the shortest 
execution time of 2.54 seconds. The reduced 
number of points led to less accurate path 
generation, reflecting a trade-off between path 
detail and speed. 

 
• Group 4: This group used 64 points, the highest 

number of points tested, achieving the best fit 
accuracy of 0.98 mm. However, it also had the 
longest execution time at 10.68 seconds. The 
increased number of points allowed for finer 
resolution and more precise alignment with the 
actual path but required more processing time. 

 
From these results, it is clear that increasing the 

number of points generally improves fit accuracy by 
providing a more detailed representation of the path. 
Group 4's superior accuracy demonstrates how additional 
points can enhance path fidelity. However, this 
improvement in accuracy comes with increased 
computational time, as observed with the longer execution 
time for Group 4. 

Conversely, fewer points, as seen in Group 3, result in 
faster execution times but with lower fit accuracy. This 
indicates a trade-off between the level of detail captured 

and the computational efficiency of the path planning 
process. 

In summary, the number of points significantly 
influences the fit accuracy of the generated path. While a 
greater number of points enhances accuracy, it also 
increases the time required to complete the path. The 
choice of point density should therefore be guided by the 
specific needs of the application, balancing the 
requirements for precision and efficiency. 

 

V. CONCLUSIONS 
In this initiative, we directed efforts towards 

constructing a computer vision system capable of 
converting visual data into precise instructions for robotic 
operations. We began by applying sophisticated 
techniques in image processing to refine and decode the 
visuals, ensuring that the paths depicted on paper were 
replicated accurately by the robotic arm. By translating 
these images into coordinate points and adjusting their 
scale to the operational parameters of the robot, we 
achieved remarkable precision. Our system incorporates 
the Robotics Operating System (ROS) and RoboDK, both 
known for their effectiveness in managing intricate robotic 
functions. Extensive tests and calibration, especially in 
regulating the robot arm's motion and path planning, 
allowed us to reach an impressive level of accuracy. This 
framework not only boosted the functionality of our 
robotic system but also expanded our capabilities 
concerning accuracy and practical application. The 
successful methodologies we adopted have broad 
implications for future enhancements in various robotic 
systems and are instrumental in advancing autonomous 
robotics. 

Currently, the program only processes 2D images, thus 
ignoring variations in elevation or other three-dimensional 
aspects. Our goal is to augment the system with support 
for 3D drawing. This enhancement will enable the robot to 
navigate and interact within a more complex environment, 
elevating its adaptability and operational efficiency. By 
addressing these future enhancements, we aim to 
significantly broaden the scope and applicability of our 
system. 

The integration of 3D processing capabilities will 
enhance the robot's ability to handle more complex tasks, 
making it suitable for a wider range of industrial 
applications. As we continue to develop and refine this 
system, we anticipate it will play a crucial role in 
advancing the field of autonomous robotics, offering 
innovative solutions to real-world challenges[15]. 
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