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Abstract Throat diseases are one of the global health issues.
Early diagnosis could be an effective solution to prevent more
severe throat disease. Automatic diagnosis based on medical
images is possible to obtain by using Convolutional Neural
Networks (CNN). This study employs two pretrained models
namely ResNet50 and EfficientNetB0. The dataset contained
79 throat images divided to seven classes (normal, chronic
laryngitis, acute pharyngitis, chronic pharyngitis, acute
tonsillitis, chronic tonsillitis, and acute tonsillopharyngitis).
The study was conducted in several scenarios and
implemented gradually. First scenario, seven classes were
merged into four classes (normal, pharyngitis, tonsillitis, and
acute tonsillopharyngitis). Second scenario, four classes were
combined into three classes (normal, pharyngitis, and
tonsillitis). Third scenario, three classes were grouped into
two classes (normal and illness). The results indicated that
both the ResNetS0 and EfficientNetB0 architectures achieved
the highest performance in the third scenario (two classes).
Both models showed identical evaluation matrics with
accuracy of 91,67%, precision of 90%, recall of 100%, and
F1-score of 94,74%. Furthermore, this study suggests that a
dataset with numerous classes and limited data can be
addressed by merging classes, thereby increasing the data
size within each class.

Throat CNN,
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ResNet50, EfficientNetB0.

1. INTRODUCTION

The throat plays a vital role in the human body,
particularly in daily functions such as swallowing,
breathing, and speaking. Due to its essential function and
frequent use, the throat is highly susceptible to disorders
caused by viral and bacterial infections, allergies, and
environmental factors. Diseases of the upper respiratory
tract, including throat infections, laryngitis, and
nasopharyngeal cancer, continue to be significant global
health issues. It is estimated that more than one billion
cases of throat infections occur globally each year, with the
highest prevalence in developing countries [1]. In 2022,
the Indonesian Ministry of Health reported that diphtheria,
one of the throat-related diseases, had spread to nearly all
provinces in the country, including West Nusa Tenggara
(NTB) [2].

The government has made various efforts to address
this issue. In particular, the NTB provincial government
has actively increased the provision of medical equipment
to support diagnostic processes [3]. One of the primary

tools used is the endoscope, which captures images that
serve as the basis for physicians to make a diagnosis [4].
However, the current diagnostic process still relies heavily
on manual examination by doctors, which can be time-
consuming and prone to inaccuracies, especially in
distinguishing between visually similar infections [5].

Furthermore, access to ENT specialists and diagnostic
tools such as PCR or microbiological culture is very
limited in rural areas and 3T regions (frontier, outermost,
and disadvantaged areas) [5]. Early detection is crucial to
prevent serious complications such as peritonsillar abscess
or wider spread of infection [5]. To date, there is still no
universal diagnostic method that is both fast and accurate
in detecting various pathogens that cause throat infections,
even though this region often serves as an entry point for
new or mutated pathogens [6]. Therefore, there is a strong
need for an automated system capable of accelerating
image analysis and improving diagnostic precision and
accuracy.

Many studies have been conducted on automated
throat disease diagnosis systems. Previous study has
explored expert systems based on certainty factor [7],
Dempster-Shafer theory [8], and case-based reasoning [9]
to detect throat cancer. However, these approaches were
generally based only on patient-reported symptoms and
did not utilize visual examination data, resulting in less
accurate diagnoses [10]. The use of medical imaging for
throat disease diagnosis can be enhanced through the
application of deep learning, which enables automatic and
more accurate disease classification. A prominent branch
of deep learning is the Convolutional Neural Network
(CNN) [10].

The reliability of Convolutional Neural Networks
(CNNs) has been well established not only in the medical
domain but also in other fields characterized by limited data
availability. For instance, in the classification of local fruits
in West Nusa Tenggara, CNN models such as ResNet50
and MobileNetV2 delivered high accuracy even with small
datasets, especially when combined with preprocessing
techniques like HSV color space transformation and
background removal [11]. Similarly, in waste classification
applications, models including ResNet50 and VGG16
achieved accuracy levels above 95%, with ResNet50
additionally demonstrating shorter training times in low-
data environments [12]. These findings underscore the
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adaptability of CNNs to handle constrained and imbalanced
datasets effectively, reinforcing their potential for use in
image-based medical diagnosis systems.

Among the various available architectures,
EfficientNetB0O and ResNet50 are frequently used due to
their respective advantages. EfficientNetBO0 is known for
its efficiency in terms of model complexity and accuracy
by incorporating compound scaling that balances depth,
width, and input resolution, making it particularly suitable
for small datasets while maintaining high performance
[13]. In contrast, ResNet50 offers strong training stability
and generalization ability through residual connections,
which help overcome the vanishing gradient problem in
deep networks [14].

In a previous study that compared EfficientNetBO,
ResNet50, and MobileNetV3 in classifying acute
pharyngitis using 343 throat images, EfficientNetBO
achieved the highest accuracy of 95.5%, followed by
ResNet50 at 88.1% and MobileNetV3 at 82.1% [15].
Another study involving 339 throat images compared
ResNet50, InceptionV3, and MobileNetV2 and found that
ResNet50 achieved the best accuracy at 95.3% [16]. These
findings demonstrate the significant potential of
EfficientNetBO and ResNet50 in accurately detecting
throat diseases, making them promising candidates for
further exploration in this study.

Based on this background, the present study aims to
develop a throat disease classification model using
endoscopic images by comparing the performance of two
CNN architectures, namely EfficientNetBO and ResNet50.
To address limited data and class imbalance, the study
applies basic image augmentation and class merging
strategies based on anatomical and visual similarity.
Additionally, Bayesian Optimization is used for efficient
hyperparameter tuning to optimize model performance.
This study is expected to provide insights into the most
effective model for medical applications and to contribute
to the development of faster, more accurate, and resource-
efficient automated diagnostic systems, especially in
healthcare settings with limited computational resources.

II. LITERATURE REVIEW

Study in throat disease classification based on
endoscopic images has been widely conducted using
transfer learning approaches involving Convolutional
Neural Network (CNN) architectures. Numerous studies
have demonstrated that CNNs can achieve high
performance in analyzing throat images. For example, a
study by Chng et al. in 2024 compared three CNN
architectures, namely EfficientNetBO, ResNet50, and
MobileNetV3, for the detection of acute pharyngitis using
343 throat images. The results showed that EfficientNetB0
achieved the highest accuracy at 95.5%, followed by
ResNet50 with 88.1% and MobileNetV3 with 82.1% [15].
Similarly, Yoo et al. in 2020 employed ResNet50 enhanced
with CycleGAN for data augmentation and achieved an
accuracy of 95.3% [16]. In the context of laryngeal cancer
detection, Xu et al. in 2023 used DenseNet201 on 2,254

laryngoscopy images and achieved a validation accuracy of
92% [17]. Another study by He et al. in 2021 implemented
InceptionV3 to classify NBI and histopathological images
and reported an AUC of 0.994 [18]. Furthermore, Alrowais
et al. and Mohamed et al., both in 2023, applied hybrid
architectures combining InceptionV3 with Aquila
Optimization and EfficientNetBO with Dwarf Mongoose
Optimization for throat cancer classification. Their results
achieved accuracies of 96.02% [19] and 99.53% [4]
respectively. Based on the comparison of these studies,
EfficientNetBO and ResNet50 have consistently
demonstrated superiority in both accuracy and parameter
efficiency, which makes them appropriate choices for
further exploration in this study.

Data limitations and class imbalance remain major
challenges in medical image classification, as they can lead
to overfitting and lower accuracy for minority classes [20].
One study proposed a strategy known as Class Confusion
Merging, which aims to improve model accuracy by
merging classes that are frequently misclassified based on
the confusion matrix [21]. Although the method relies on
the confusion matrix, the present study adopts a similar
principle by grouping classes based on visual similarity and
anatomical proximity. This approach is effective in
reducing class imbalance within a small-scale endoscopic
dataset [21]. In addition, basic image augmentation is used
to increase data diversity without distorting essential
features [22], as successfully implemented in previous
study [15]. Compared to other techniques such as Synthetic
Minority Oversampling Technique (SMOTE) or GAN-
based augmentation, which may produce unrealistic images
or require heavy computation, basic augmentation is more
suitable for medical data that are sensitive to distortion [22].

For model optimization, Bayesian Optimization is
widely used for model tuning due to its efficiency in
exploring hyperparameter spaces. It has been shown to
accelerate the tuning process while producing more stable
and accurate CNN models, such as in brain tumor
classification tasks [23]. This approach has also
demonstrated superior performance in detecting ear
diseases from otoscopic images, achieving accuracy as high
as 98.10%, outperforming traditional manual tuning
methods [24]. Compared to metaheuristic algorithms like
Aquila Optimization and Dwarf Mongoose Optimization,
which tend to be complex and less practical to implement,
Bayesian Optimization offers a simpler yet effective
alternative [25].

Considering all these approaches, this study presents a
new contribution by implementing a combination of
EfficientNetBO and ResNet50 architectures, a class
merging strategy based on visual and anatomical similarity,
basic augmentation that is stable and efficient, and
hyperparameter tuning using Bayesian Optimization. This
study is specifically designed to perform optimally on small
datasets and can be applied in healthcare facilities with
limited computational resources. The novelty of this
approach is expected to enrich the literature on automated
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throat disease diagnosis using deep learning and provide a
practical solution for medical decision support systems.

III. METHODOLOGY

A. Study Flow

This study involved several stages, including data
collection, data splitting, data preprocessing, data
augmentation, and training models using ResNet50 and
EfficientNetBO architectures. The trained models were
evaluated to assess their performance and determine
whether it was optimal. If the performance was found to be
optimal, the next step was to record and analyze the results.
However, if the model’s performance was not yet optimal,
the training process was repeated by applying
hyperparameter tuning using the Bayesian Optimization
method. If the performance remained suboptimal even after
tuning, the training process was repeated until optimal
model performance was achieved by merging class. The
overall study flow is illustrated in Figure 1.

Literature
Review

Collection of Throat
Image Dataset

Augmenting Data Dataset
Training Data Preprocessing | Splitting
Training ResNet50 s the mode No Training with

performance
optimal?

and EfficientNetBO Hyperparameter Tuning

Yes s the model No
End AE:‘SU;TS performance
4 optimal?

Fig. 1. Study Flow.

B. Dataset Throat Diseases

This study used a dataset that consisting throat images
captured by a laryngoscope. The dataset contains 79 throat
images in 7 classes. The dataset was obtained from doctor
practicing at University of Mataram Hospital. The dataset
labeling process was conducted by two ENT specialists
from the Faculty of Medicine, University of Mataram
(UNRAM), namely Prof. Dr. dr. Hamsu Kadriyan,
Sp.THT-KL (K), M.Kes, and Dr. dr. Didit Yudhanto,
Sp.THT-KL, M.Sc. The distribution and sample of the
dataset are presented in Table 1.

TABLE I. DISTRIBUTION AND SAMPLE OF THE DATASET

Type of Disease Total Sample

Normal 20

Type of Disease Total Sample
Chronic Laryngitis 3
Acute Pharyngitis 16
Chronic Pharyngitis 4
Acute Tonsillitis 6
Chronic Tonsillitis 18
Acute Tonsillopharyngitis 12

The dataset was divided into three sections, 70% of
training data, 15% of validation data, and 15% of testing
data. Model was trained by using training data and
validation data. Meanwhile, model performance was
evaluated using testing data.

C. Data Preprocessing

This stage aims to enhance image quality by applying
resizing and rescaling techniques. Resizing was performed
by changing the image dimensions from 512x512 pixels to
224x224 pixels to conform to the standard input size
required by EfficientNetBO [26] and ResNet50 [10].
Rescaling is intended to accelerate the training process and
maintain model stability. For EfficientNetBO0, pixel values
were scaled from the original range of 0-255 to a range of
0 to 1. In contrast, for the ResNet50 model, pixel values
were scaled from 0-255 to a range of -1 to 1.

D. Class Merging Startegy

To address the challenges of limited data and class
imbalance, this study applied a step-by-step class merging
strategy across four scenarios. The original dataset
consisted of seven classes, which were progressively
grouped based on visual similarity and anatomical
proximity. In the first scenario, the dataset was reduced to
four classes by merging acute and chronic forms of
pharyngitis and tonsillitis. The second scenario further
combined tonsillopharyngitis with tonsillitis, resulting in
three classes. In the final scenario, all disease classes were
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merged into a single illness class, leading to binary
classification between normal and illness. This merging
process aimed to simplify the classification task while
improving class distribution and data availability.

E. Data Augmentation

This process is carried out to increase the size and
diversity of the dataset, address the imbalance class size,
and reduce the risk of overfitting caused by the small
dataset size. Augmentation was applied to the training data
after the dataset had been divided into three subsets:
training, validation, and testing data. The augmentation
process was conducted using Keras’s
ImageDataGenerator, involving horizontal flipping, width
and height translation by 5%, random rotation between -10°
and +10°, and zooming up to 20%. During augmentation,
there were empty areas around the image because of image
transformations such as rotation or translation. To resolve
this, these empty areas were filled with colors interpolated
from nearby pixels. This approach ensures that the
augmented images remain natural and visually complete. It
allowed the model to learn effectively without being
distracted by missing or distorted parts. The number of
augmented images in each class was determined as three
times the number of images in the class with the highest
original count. This total was then applied uniformly across
all classes.

F. Model Architecture

In this process, the model was developed using a
transfer learning approach due to the small dataset size,
which can lead to overfitting and suboptimal model
performance [13]. This study also employed pretrained
models, EfficientNetB0 and ResNet50, for the
classification task of throat diseases. The initial weights for
training were obtained from ImageNet, followed by
adjustments to the fully connected layers to accommodate
the throat disease classification task. In this study, the
architectures of ResNet50 and EfficientNetBO were
modified to support throat disease classification. This
modification involved removing the original fully
connected layers from each model and adding several new
layers tailored to the target classes. The first step was to add
a Global Average Pooling 2D layer to simplify the
extracted features into a more compact form. The output
was then passed through a dense layer with 128 neurons
and a ReLU activation function, helping the model
recognize important patterns in the data. Subsequently, a
dropout layer with a rate of 0.5 was added to prevent
overfitting. Finally, a dense output layer was added,
adjusted to match the number of target classes.

G. Hyperparameter Tuning

Hyperparameter tuning can be performed manually by
testing a predefined set of hyperparameters one by one. In
this study, hyperparameter tuning was carried out
automatically using the Bayesian Optimization method.
This method was chosen for its ability to efficiently
optimize the objective function by leveraging information

from previous searches to determine the most promising
next combination [23]. The range of values explored during
the hyperparameter tuning process is presented in Table II.

TABLE II. HYPERPARAMETER SEARCH RANGE

Hyperparameter Value Range
Unit Dense 32to 512
Dropout Rate 0,2t00,5
Learning Rate le-6 to le-2
H. Model Evaluation
This process was conducted to evaluate the

performance of the ResNet50 and EfficientNetBO models
in classifying throat diseases. The evaluation was carried
out by testing the models on the test dataset using four
metrics: accuracy, precision, recall, and F1-score [27]. All
metrics were calculated based on the values of True
Positive (TP), True Negative (TN), False Positive (FP), and
False Negative (FN) derived from the confusion matrix.
The formulas for each metric based on the confusion matrix
are presented below.

TP+TN
Accuracy = —— (H
TP+FP+TN+FN
- TP
Precision = 2)
TP+FP
TP
Recall = —— 3)
TP+FN
(precisionxrecall)
F1 —score =2 X ————= 4

(precision+recall)

IV. RESULT AND DISCUSSION

A. Data Augmentation

Augmentation was applied only to the training data to
increase variation and address class imbalance within the
dataset. The augmentation techniques used include
flipping, translation, rotation, and zooming. The results of
the augmentation process are presented in Table III.

TABLE III. AUGMENTATION TECHNIQUES

Augmentation Before

After

Flip

Translation
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Augmentation Before After

Rotation

Zoom

After the augmentation process was applied to the
training data, the number of augmented samples for each
scenario of dataset division can be seen in Table IV.

TABLE IV. AUGMENTATION DATA

Total
Scenario Class
Before After
Normal 20 60
Chronic Laryngitis 3 60
Acute Pharyngitis 16 60
Dataset of Chronic Pharyngitis 4 60
Seven Classes
Acute Tonsillitis 6 60
Chronic Tonsillitis 18 60
Acute
Tonsillopharyngitis 12 60
Normal 20 72
Dataset of Four Pharyngitis 2 2
Classes Tonsillitis 24 72
Acute
Tonsillopharyngitis 12 72
Normal 20 108
Dataset of ..
Three Classes Pharyngitis 23 108
Tonsillitis 36 108
Dataset of Two Normal 20 177
Classes Tllness 59 177

B. Model Evaluation

The performance of the trained ResNet50 and
EfficientNetB0 models was evaluated for the task of throat
disease classification. The training process was conducted
over 100 epochs with a learning rate of le-4 (0.0001),
utilizing the Adam optimizer. To enhance training stability,
callbacks were applied, including EarlyStopping which
halts the training process when the val loss metric stops
improving and ModelCheckpoint, which stores the highest
val_accuracy value achieved during training [13]. The
performance of both ResNet50 and EfficientNetB0 models
was assessed using a confusion matrix and standard
evaluation metrics, namely accuracy, precision, recall, and
Fl-score. The following sections present the evaluation
results of the models under several different experimental
scenarios.

B.1. Dataset of Seven Classes

In this scenario, the dataset used is the original dataset
consisting of seven classes. The test data from this dataset
was evaluated using both the ResNet50 and EfficientNetB0
models. The confusion matrix resulting from the evaluation
of the ResNet50 dan EfficientNetB0 model is presented in
Figure 2 dan Figure 3.
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Fig. 2. Confusion Matrix ResNet50.
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Fig. 3. Confusion Matrix EfficientNetB0.

Based on Figures 2 and 3, both models still encountered
difficulties in distinguishing images between classes. Both
ResNet50 and EfficientNetBO frequently misclassified
acute tonsillitis and chronic tonsillitis. Specifically, the
ResNet50 model tended to predict images of acute
tonsillitis as chronic tonsillitis, while EfficientNetBO0 often
predicted chronic tonsillitis as acute tonsillitis.
Additionally, ResNet50 misclassified images of chronic
pharyngitis as acute pharyngitis. This misclassification
may occur because the differentiation between acute and
chronic conditions is primarily based on the duration of the
illness experienced by the patient, whereas their anatomical
locations are the same and their visual characteristics are
nearly identical [28].

Both models also misclassified normal images as acute
pharyngitis. On the other hand, ResNet50 incorrectly
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classified images of acute pharyngitis and chronic tonsillitis
as normal. In contrast, EfficientNetBO did not misclassify
any diseased images as normal. Although both models
successfully predicted chronic laryngitis images correctly,
this result may be biased due to the small class size and
extensive data augmentation [29]. The models’ difficulty in
distinguishing between classes is further supported by the
evaluation metric values presented in Table V.

TABLE V. PERFORMANCE EVALUATION OF THE SEVEN-CLASS

SCENARIO
Accuracy | Precision | Recall | Fl-score
Moddl (%) @) | ) | (%)
ResNet50 38,46 30,95 35,71 32,93
EfficientNetB0 38,46 38,10 42,86 37,62

Table V shows that both models achieved relatively low
accuracy, precision, recall, and Fl-score values, ranging
from approximately 30% to 40% [27]. In the context of
medical technology, recall indicates the model’s ability to
correctly identify patients who are actually ill, whereas
precision reflects the model’s ability to avoid
misclassifying healthy individuals as diseased [30]. The
low evaluation metric values suggest that neither model
was able to accurately detect diseases or predict each class
reliably.

In this scenario, both models experienced overfitting.
The models adapted too closely to the training data and
failed to generalize well to the test data [13]. Overfitting
may have been caused by a small and imbalanced dataset
[29]. As a corrective strategy, a subsequent scenario was
implemented involving class merging to reduce the
models’ classification difficulty and enhance their
performance in throat disease classification. Class merging
under specific conditions can be an effective solution when
facing challenges related to limited dataset size [31].

B.2. Dataset of Four Classes

In this scenario, the original seven-class dataset was
restructured into four classes: normal, pharyngitis,
tonsillitis, and tonsillopharyngitis. The merging of acute
and chronic cases of the same disease was carried out by
considering their anatomical location and the visual
similarity of the images [28]. The chronic laryngitis class
was merged into the laryngitis class, as the anatomical
location can visually overlap, particularly when
inflammation spreads [28]. The normal and acute
tonsillopharyngitis classes were retained due to their
distinct visual characteristics and the sufficient number of
available samples [29]. The confusion matrices resulting
from the evaluation of the ResNet50 and EfficientNetB0
models in this scenario are presented in Figures 4 and 5.

Confusion Matrix
3.0

Normal
=
o
o

2.5

2.0

Pharyngitis

Actual
I~
«

- 0.5
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' |

' . | l
Normal Pharyngitis Tonsilitis  Tonsilofaringitis akut
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Fig. 4. Confusion Matrix ResNet50.
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Predicted

Fig. 5. Confusion Matrix EfficientNetB0.

Based on Figure 4, the ResNet50 model no longer
misclassified diseased images as normal. However, both
models still misclassified one normal image as acute
pharyngitis. In addition, both models incorrectly classified
pharyngitis images as tonsillitis. The models also continued
to confuse tonsillitis with acute tonsillopharyngitis, and
vice versa. This confusion may have occurred because
tonsillopharyngitis is a combined condition involving both
tonsillitis and pharyngitis [28]. When the inflammation is
more prominent in the tonsils, tonsillopharyngitis images
are likely to be interpreted by the model as tonsillitis.

These findings indicate that both models still struggle
to differentiate between throat disease classes. This
limitation may be due to the insufficient number of images
per class, which hinders the models’ ability to fully learn
and recognize throat disease patterns [29]. Additionally,
low-quality or unclear medical images can present further
challenges for classification models [32]. The difficulty
faced by the models in distinguishing between classes is
further supported by the evaluation metrics shown in Table
VL
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TABLE VI. PERFORMANCE EVALUATION OF THE FOUR-CLASS

SCENARIO
Accuracy Precision | Recall | Fl-score
Moddl (%) @) | ) | )
ResNet50 41,67 50 43,57 44,58
EfficientNetB0 41.67 45,83 37,50 40

Table VI indicates that both models experienced a slight
performance improvement in this scenario compared to the
previous scenario with seven classes. Despite the
improvement, the overall performance of both models
remains suboptimal [27]. This is evident from the
evaluation metric values, which are still relatively low,
ranging between 40% and 50%. The fact that precision
scores are higher than recall scores may also suggest that
both models are experiencing overfitting [13]. This issue is
primarily attributed to the limited amount of data and the
imbalance in class distribution [29].

In this scenario, Hyperparameter tuning was applied to
improve model performance by searching for the best
hyperparameters. The hyperparameter tuning was
conducted using the Bayesian Optimization method. After
completing the tuning process using the specified method,
the best hyperparameters obtained are presented in Table
VIL.

TABLE VII. BEST PARAMETERS IN THE FOUR-CLASS SCENARIO

Model Hyperparameter Value Range
ResNet50 Unit Dense 384
Dropout Rate 0,4

Learning Rate 0.00011964743859134101

EfficientNetB0 Unit Dense 256

Dropout Rate 0,2

0.0006748735068204596

Learning Rate

The comparison of two models with hyperparameter tuning
can be seen in Table VIIL

TABLE VIII. CoMPARISON TWO MODELS WITH HYPERPARAMETER
TUNING IN THE FOUR-CLASS SCENARIO

Model Accuracy Precision | Recall | Fl-score
(%) (%) (%) (%)
BO ResNet50 83,3 66,7 66,7 66,7
BO 79,2 58,3 58,3 58,3
EfficientNetBO

After tuning, the performance of both the ResNet50 and
EfficientNetB0 models improved, with ResNet50 slightly
outperforming EfficientNetB0O. This suggests that
ResNet50 is more sensitive to hyperparameter
configurations, whereas EfficientNetBO tends to be more
stable [33]. Nevertheless, the performance of both models
remains  suboptimal despite the application of
hyperparameter tuning. Therefore, a subsequent scenario
will be conducted.

B.3. Dataset of Three Classes

In the previous scenario, both models frequently
confused tonsillitis with tonsillopharyngitis. Considering
this, the tonsillopharyngitis class was merged into the
tonsillitis class. As a result, this scenario includes three
classes: normal, pharyngitis, and tonsillitis. After testing
with the ResNet50 and EfficientNetBO models, identical
confusion matrices were obtained. The confusion matrices

for both models are presented in Figure 6.
Confusion Matrix

Actual
Pharyngitis Normal
! \

Tonsilitis
)
o
o

Tonsilitis

Normal Pharyngitis
Predicted

Fig. 6. Confusion Matrix ResNet50 dan EfficientNetB0.

Based on Figure 6, in this scenario, both models
successfully predicted all tonsillitis images accurately.
However, both models consistently misclassified one
normal image as pharyngitis and two pharyngitis images as
tonsillitis. The models still tended to interpret pharyngitis
images as tonsillitis. This may occur because, during a
pharyngitis episode, the tonsils can also become inflamed
[28]. A pharyngitis image may be misclassified as tonsillitis
if the inflammation appears more prominent in the tonsillar
region. The corresponding evaluation metric values are
presented in Table IX.

TABLE IX. PERFORMANCE EVALUATION OF THE THREE-CLASS

SCENARIO
Accuracy Precision | Recall | Fl-score
Model (%) @) | ) | ()
ResNet50 72,73 73,81 66,67 67,78
EfficientNetB0 72,73 73,81 66,67 67,78

Table IX shows that the ResNet50 and EfficientNetBO
models achieved improved accuracy, precision, recall, and
F1-score values, ranging from approximately 60% to 70%.
The identical results between the two models suggest that
both made correct and incorrect predictions at the same
points. This may be attributed to the small size of the test
dataset, which could lead the models to recognize similar
patterns with limited variation [29]. Interestingly, in the
three-class classification scenario, the model performed
better without data augmentation. This may be due to the
high visual similarity between pharyngitis and tonsillitis,
where basic augmentation techniques such as rotation or
flipping could obscure important distinguishing features
between the classes. Instead of improving performance,
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augmentation on a small dataset may introduce variations
that are not clinically relevant, potentially reducing the
model’s accuracy. This indicates that data augmentation
does not always enhance model performance, especially
when the added variations fail to reflect meaningful or
discriminative patterns relevant to the target classes. To
further enhance model performance, hyperparameter
tuning using Bayesian Optimization was applied in this
scenario. The best hyperparameters obtained are presented
in Table X.

TABLE X. BEST PARAMETERS IN THE THREE-CLASS SCENARIO

Model Hyperparameter Value Range
ResNet50 Unit Dense 174
Dropout Rate 0.4855450747417324
Learning Rate 0.0004015275311354817
EfficientNetBO Unit Dense 92
Dropout Rate 0.4077502503662843
Learning Rate 0.0020145932338176123

The comparison of two models with hyperparameter tuning
can be seen in Table XI.

TABLE XI. CoMPARISON TWO MODELS WITH HYPERPARAMETER
TUNING IN THE THREE-CLASS SCENARIO

Model Accuracy Precision | Recall | Fl-score
(%) (%) (%) (%)
BO ResNet50 81,82 90,48 77,78 77,78
BO
EfficientNetBO 72,73 73,81 66,67 67,78

After tuning, the ResNet50 model demonstrated
improved performance. In contrast, the performance of
EfficientNetBO did not show any improvement. This
difference in response to tuning indicates that ResNet50 is
more flexible with respect to configuration adjustments,
allowing the tuning process to enhance its ability to
recognize disease patterns [33]. On the other hand,
EfficientNetBO, which is designed with an -efficient
architecture, tends to be stable but less responsive to
hyperparameter changes, particularly when applied to
small datasets [33].

B.4. Dataset of Two Classes

In this scenario, the pharyngitis and tonsillitis classes
were merged into a single "diseased" class, while the
normal class was retained. This merging was conducted
because, in the previous scenario, both models struggled to
distinguish between pharyngitis and tonsillitis. After testing
with the ResNet50 and EfficientNetBO models, identical
confusion matrices were obtained. The confusion matrices
for both models are presented in Figure 7.

Confusion Matrix

Normal
|

True Label

Sakit

|
Normal
Predicted Label

Fig. 7. Confusion Matrix of ResNet50 and EfficientNetB0.

Based on Figure 7, both models correctly predicted all
images in the diseased class. However, both models
consistently misclassified one normal image as diseased.
When the two previously separate classes were merged, the
models succeeded in making correct predictions.
Nevertheless, misclassification in the class that was not
merged still occurred. The evaluation metric values are
presented in Table XII.

TABLE XII. PERFORMANCE EVALUATION OF THE TWO-CLASS

SCENARIO
Accuracy Precision | Recall | Fl-score
Model (%) @ | o | )
ResNet50 91,67 90 100 94,74
EfficientNetB0 91,67 90 100 94,74

The perfect recall value in Table XII indicates that the
model did not miss a single diseased case in the test data,
which is crucial in a medical context, as false negatives can
pose serious risks [30]. However, the gap between
precision and recall suggests the presence of false positives,
specifically one normal case misclassified as diseased.
Moreover, both models were still unable to overcome
overfitting despite the implementation of EarlyStopping. In
addition, the use of data augmentation in this two-class
classification did not improve model performance, which
contrasts with the results observed in the three-class
classification. This is likely because the classification task
is simpler, making the models less dependent on additional
data variation. Therefore, further improvements are
necessary to enhance the model’s ability to accurately
identify the normal class, in order to prevent healthy
individuals from being misdiagnosed.

Overall, this scenario demonstrates improved
performance compared to the previous multi-class
scenarios. The class merging strategy successfully
enhanced the model’s predictive capability [33]. However,
this high performance may not fully reflect the model’s
capacity in more complex classification tasks. Such
simplification may obscure important distinctions between
diseases and still leaves the model vulnerable to overfitting
due to the limited dataset size and class imbalance.
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V. CONCLUSION AND RECOMMENDATIONS

Based on the findings of this study, it can be concluded
that progressive class merging on a small dataset
contributes to improved performance of CNN models in the
task of throat disease -classification. The accuracy,
precision, recall, and Fl-score of the two model
architectures used ResNet50 and EfficientNetB0 increased
as the number of classes was gradually reduced.
Importantly, the class merging was carried out under
specific considerations. In the case of throat diseases, the
merging was based on anatomical location and visual
similarity in medical images. Additionally, the ResNet50
model responded more positively to hyperparameter tuning
than EfficientNetB0, which tended to be more stable.

This study has several limitations. First, the dataset size
was very small (only 79 images), which may lead to
overfitting and reduce the model’s ability to generalize to
new data. Second, the imbalance in data distribution across
classes required heavy augmentation in the smallest
classes, which could affect classification accuracy,
particularly in the multi-class scenario. Third, although
binary classification yielded higher performance scores, it
does not necessarily indicate that the model is capable of
detecting specific disease types, as the classification was
limited to distinguishing between normal and diseased
cases without specifying the disease type in detail.

For further model development, it is recommended to
increase the amount of original data for each class,
particularly for classes with very small sample sizes. This
will allow the model to learn more representatively and
reduce dependence on augmented data. Additionally,
exploring other architectures is advisable to identify more
optimal models for the multi-class classification of throat
diseases. Incorporating model interpretability features,
such as Grad-CAM, is also important to enable
visualization of important image regions and support
medical validation processes. Moreover, the findings of this
study can be further developed into web-based or mobile
applications to assist in the automatic early detection of
throat diseases. Lastly, the use of ensemble methods can
also be considered to combine the strengths of multiple
model architectures in order to improve accuracy and
robustness of the classification system.
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