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Abstract Throat diseases are one of the global health issues. 

Early diagnosis could be an effective solution to prevent more 
severe throat disease. Automatic diagnosis based on medical 
images is possible to obtain by using Convolutional Neural 
Networks (CNN). This study employs two pretrained models 
namely ResNet50 and EfficientNetB0. The dataset contained 
79 throat images divided to seven classes (normal, chronic 
laryngitis, acute pharyngitis, chronic pharyngitis, acute 
tonsillitis, chronic tonsillitis, and acute tonsillopharyngitis). 
The study was conducted in several scenarios and 
implemented gradually. First scenario, seven classes were 
merged into four classes (normal, pharyngitis, tonsillitis, and 
acute tonsillopharyngitis). Second scenario, four classes were 
combined into three classes (normal, pharyngitis, and 
tonsillitis). Third scenario, three classes were grouped into 
two classes (normal and illness). The results indicated that 
both the ResNet50 and EfficientNetB0 architectures achieved 
the highest performance in the third scenario (two classes). 
Both models showed identical evaluation matrics with 
accuracy of 91,67%, precision of 90%, recall of 100%, and 
F1-score of 94,74%. Furthermore, this study suggests that a 
dataset with numerous classes and limited data can be 
addressed by merging classes, thereby increasing the data 
size within each class. 

Key words: Classification, Throat Disease, CNN, 
ResNet50, EfficientNetB0. 

I. INTRODUCTION 
The throat plays a vital role in the human body, 

particularly in daily functions such as swallowing, 
breathing, and speaking. Due to its essential function and 
frequent use, the throat is highly susceptible to disorders 
caused by viral and bacterial infections, allergies, and 
environmental factors. Diseases of the upper respiratory 
tract, including throat infections, laryngitis, and 
nasopharyngeal cancer, continue to be significant global 
health issues. It is estimated that more than one billion 
cases of throat infections occur globally each year, with the 
highest prevalence in developing countries [1]. In 2022, 
the Indonesian Ministry of Health reported that diphtheria, 
one of the throat-related diseases, had spread to nearly all 
provinces in the country, including West Nusa Tenggara 
(NTB) [2]. 

The government has made various efforts to address 
this issue. In particular, the NTB provincial government 
has actively increased the provision of medical equipment 
to support diagnostic processes [3]. One of the primary 

tools used is the endoscope, which captures images that 
serve as the basis for physicians to make a diagnosis [4]. 
However, the current diagnostic process still relies heavily 
on manual examination by doctors, which can be time-
consuming and prone to inaccuracies, especially in 
distinguishing between visually similar infections [5]. 

Furthermore, access to ENT specialists and diagnostic 
tools such as PCR or microbiological culture is very 
limited in rural areas and 3T regions (frontier, outermost, 
and disadvantaged areas) [5]. Early detection is crucial to 
prevent serious complications such as peritonsillar abscess 
or wider spread of infection [5]. To date, there is still no 
universal diagnostic method that is both fast and accurate 
in detecting various pathogens that cause throat infections, 
even though this region often serves as an entry point for 
new or mutated pathogens [6]. Therefore, there is a strong 
need for an automated system capable of accelerating 
image analysis and improving diagnostic precision and 
accuracy. 

Many studies have been conducted on automated 
throat disease diagnosis systems. Previous study has 
explored expert systems based on certainty factor [7], 
Dempster-Shafer theory [8], and case-based reasoning [9] 
to detect throat cancer. However, these approaches were 
generally based only on patient-reported symptoms and 
did not utilize visual examination data, resulting in less 
accurate diagnoses [10]. The use of medical imaging for 
throat disease diagnosis can be enhanced through the 
application of deep learning, which enables automatic and 
more accurate disease classification. A prominent branch 
of deep learning is the Convolutional Neural Network 
(CNN) [10]. 

The reliability of Convolutional Neural Networks 
(CNNs) has been well established not only in the medical 
domain but also in other fields characterized by limited data 
availability. For instance, in the classification of local fruits 
in West Nusa Tenggara, CNN models such as ResNet50 
and MobileNetV2 delivered high accuracy even with small 
datasets, especially when combined with preprocessing 
techniques like HSV color space transformation and 
background removal [11]. Similarly, in waste classification 
applications, models including ResNet50 and VGG16 
achieved accuracy levels above 95%, with ResNet50 
additionally demonstrating shorter training times in low-
data environments [12]. These findings underscore the 
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adaptability of CNNs to handle constrained and imbalanced 
datasets effectively, reinforcing their potential for use in 
image-based medical diagnosis systems. 

Among the various available architectures, 
EfficientNetB0 and ResNet50 are frequently used due to 
their respective advantages. EfficientNetB0 is known for 
its efficiency in terms of model complexity and accuracy 
by incorporating compound scaling that balances depth, 
width, and input resolution, making it particularly suitable 
for small datasets while maintaining high performance 
[13]. In contrast, ResNet50 offers strong training stability 
and generalization ability through residual connections, 
which help overcome the vanishing gradient problem in 
deep networks [14]. 

In a previous study that compared EfficientNetB0, 
ResNet50, and MobileNetV3 in classifying acute 
pharyngitis using 343 throat images, EfficientNetB0 
achieved the highest accuracy of 95.5%, followed by 
ResNet50 at 88.1% and MobileNetV3 at 82.1% [15]. 
Another study involving 339 throat images compared 
ResNet50, InceptionV3, and MobileNetV2 and found that 
ResNet50 achieved the best accuracy at 95.3% [16]. These 
findings demonstrate the significant potential of 
EfficientNetB0 and ResNet50 in accurately detecting 
throat diseases, making them promising candidates for 
further exploration in this study. 

Based on this background, the present study aims to 
develop a throat disease classification model using 
endoscopic images by comparing the performance of two 
CNN architectures, namely EfficientNetB0 and ResNet50. 
To address limited data and class imbalance, the study 
applies basic image augmentation and class merging 
strategies based on anatomical and visual similarity. 
Additionally, Bayesian Optimization is used for efficient 
hyperparameter tuning to optimize model performance. 
This study is expected to provide insights into the most 
effective model for medical applications and to contribute 
to the development of faster, more accurate, and resource-
efficient automated diagnostic systems, especially in 
healthcare settings with limited computational resources. 

II. LITERATURE REVIEW 
Study in throat disease classification based on 

endoscopic images has been widely conducted using 
transfer learning approaches involving Convolutional 
Neural Network (CNN) architectures. Numerous studies 
have demonstrated that CNNs can achieve high 
performance in analyzing throat images. For example, a 
study by Chng et al. in 2024 compared three CNN 
architectures, namely EfficientNetB0, ResNet50, and 
MobileNetV3, for the detection of acute pharyngitis using 
343 throat images. The results showed that EfficientNetB0 
achieved the highest accuracy at 95.5%, followed by 
ResNet50 with 88.1% and MobileNetV3 with 82.1% [15]. 
Similarly, Yoo et al. in 2020 employed ResNet50 enhanced 
with CycleGAN for data augmentation and achieved an 
accuracy of 95.3% [16]. In the context of laryngeal cancer 
detection, Xu et al. in 2023 used DenseNet201 on 2,254 

laryngoscopy images and achieved a validation accuracy of 
92% [17]. Another study by He et al. in 2021 implemented 
InceptionV3 to classify NBI and histopathological images 
and reported an AUC of 0.994 [18]. Furthermore, Alrowais 
et al. and Mohamed et al., both in 2023, applied hybrid 
architectures combining InceptionV3 with Aquila 
Optimization and EfficientNetB0 with Dwarf Mongoose 
Optimization for throat cancer classification. Their results 
achieved accuracies of 96.02% [19] and 99.53% [4] 
respectively. Based on the comparison of these studies, 
EfficientNetB0 and ResNet50 have consistently 
demonstrated superiority in both accuracy and parameter 
efficiency, which makes them appropriate choices for 
further exploration in this study. 

Data limitations and class imbalance remain major 
challenges in medical image classification, as they can lead 
to overfitting and lower accuracy for minority classes [20]. 
One study proposed a strategy known as Class Confusion 
Merging, which aims to improve model accuracy by 
merging classes that are frequently misclassified based on 
the confusion matrix [21]. Although the method relies on 
the confusion matrix, the present study adopts a similar 
principle by grouping classes based on visual similarity and 
anatomical proximity. This approach is effective in 
reducing class imbalance within a small-scale endoscopic 
dataset [21]. In addition, basic image augmentation is used 
to increase data diversity without distorting essential 
features [22], as successfully implemented in previous 
study [15]. Compared to other techniques such as Synthetic 
Minority Oversampling Technique (SMOTE) or GAN-
based augmentation, which may produce unrealistic images 
or require heavy computation, basic augmentation is more 
suitable for medical data that are sensitive to distortion [22]. 

For model optimization, Bayesian Optimization is 
widely used for model tuning due to its efficiency in 
exploring hyperparameter spaces. It has been shown to 
accelerate the tuning process while producing more stable 
and accurate CNN models, such as in brain tumor 
classification tasks [23]. This approach has also 
demonstrated superior performance in detecting ear 
diseases from otoscopic images, achieving accuracy as high 
as 98.10%, outperforming traditional manual tuning 
methods [24]. Compared to metaheuristic algorithms like 
Aquila Optimization and Dwarf Mongoose Optimization, 
which tend to be complex and less practical to implement, 
Bayesian Optimization offers a simpler yet effective 
alternative [25]. 

Considering all these approaches, this study presents a 
new contribution by implementing a combination of 
EfficientNetB0 and ResNet50 architectures, a class 
merging strategy based on visual and anatomical similarity, 
basic augmentation that is stable and efficient, and 
hyperparameter tuning using Bayesian Optimization. This 
study is specifically designed to perform optimally on small 
datasets and can be applied in healthcare facilities with 
limited computational resources. The novelty of this 
approach is expected to enrich the literature on automated 
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throat disease diagnosis using deep learning and provide a 
practical solution for medical decision support systems. 

III. METHODOLOGY 

A. Study Flow 
This study involved several stages, including data 

collection, data splitting, data preprocessing, data 
augmentation, and training models using ResNet50 and 
EfficientNetB0 architectures. The trained models were 
evaluated to assess their performance and determine 
whether it was optimal. If the performance was found to be 
optimal, the next step was to record and analyze the results. 
However, if the model’s performance was not yet optimal, 
the training process was repeated by applying 
hyperparameter tuning using the Bayesian Optimization 
method. If the performance remained suboptimal even after 
tuning, the training process was repeated until optimal 
model performance was achieved by merging class. The 
overall study flow is illustrated in Figure 1.  

 
Fig. 1.  Study Flow. 

B. Dataset Throat Diseases 
This study used a dataset that consisting throat images 

captured by a laryngoscope. The dataset contains 79 throat 
images in 7 classes. The dataset was obtained from doctor 
practicing at University of Mataram Hospital. The dataset 
labeling process was conducted by two ENT specialists 
from the Faculty of Medicine, University of Mataram 
(UNRAM), namely Prof. Dr. dr. Hamsu Kadriyan, 
Sp.THT-KL (K), M.Kes, and Dr. dr. Didit Yudhanto, 
Sp.THT-KL, M.Sc. The distribution and sample of the 
dataset are presented in Table 1. 

TABLE I.  DISTRIBUTION AND SAMPLE OF THE DATASET 

Type of Disease Total Sample 

Normal 20 

 

Type of Disease Total Sample 

Chronic Laryngitis 3 

 

Acute Pharyngitis 16 

 

Chronic Pharyngitis 4 

 

Acute Tonsillitis 6 

 

Chronic Tonsillitis 18 

 

Acute Tonsillopharyngitis 12 

 
The dataset was divided into three sections, 70% of 

training data, 15% of validation data, and 15% of testing 
data. Model was trained by using training data and 
validation data. Meanwhile, model performance was 
evaluated using testing data. 

C. Data Preprocessing 
This stage aims to enhance image quality by applying 

resizing and rescaling techniques. Resizing was performed 
by changing the image dimensions from 512×512 pixels to 
224×224 pixels to conform to the standard input size 
required by EfficientNetB0 [26] and ResNet50 [10]. 
Rescaling is intended to accelerate the training process and 
maintain model stability. For EfficientNetB0, pixel values 
were scaled from the original range of 0–255 to a range of 
0 to 1. In contrast, for the ResNet50 model, pixel values 
were scaled from 0–255 to a range of -1 to 1. 

D. Class Merging Startegy 
To address the challenges of limited data and class 

imbalance, this study applied a step-by-step class merging 
strategy across four scenarios. The original dataset 
consisted of seven classes, which were progressively 
grouped based on visual similarity and anatomical 
proximity. In the first scenario, the dataset was reduced to 
four classes by merging acute and chronic forms of 
pharyngitis and tonsillitis. The second scenario further 
combined tonsillopharyngitis with tonsillitis, resulting in 
three classes. In the final scenario, all disease classes were 
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merged into a single illness class, leading to binary 
classification between normal and illness. This merging 
process aimed to simplify the classification task while 
improving class distribution and data availability. 

E. Data Augmentation 
This process is carried out to increase the size and 

diversity of the dataset, address the imbalance class size, 
and reduce the risk of overfitting caused by the small 
dataset size. Augmentation was applied to the training data 
after the dataset had been divided into three subsets: 
training, validation, and testing data. The augmentation 
process was conducted using Keras’s 
ImageDataGenerator, involving horizontal flipping, width 
and height translation by 5%, random rotation between -10° 
and +10°, and zooming up to 20%. During augmentation, 
there were empty areas around the image because of image 
transformations such as rotation or translation. To resolve 
this, these empty areas were filled with colors interpolated 
from nearby pixels. This approach ensures that the 
augmented images remain natural and visually complete. It 
allowed the model to learn effectively without being 
distracted by missing or distorted parts. The number of 
augmented images in each class was determined as three 
times the number of images in the class with the highest 
original count. This total was then applied uniformly across 
all classes. 

F. Model Architecture 
In this process, the model was developed using a 

transfer learning approach due to the small dataset size, 
which can lead to overfitting and suboptimal model 
performance [13]. This study also employed pretrained 
models, EfficientNetB0 and ResNet50, for the 
classification task of throat diseases. The initial weights for 
training were obtained from ImageNet, followed by 
adjustments to the fully connected layers to accommodate 
the throat disease classification task. In this study, the 
architectures of ResNet50 and EfficientNetB0 were 
modified to support throat disease classification. This 
modification involved removing the original fully 
connected layers from each model and adding several new 
layers tailored to the target classes. The first step was to add 
a Global Average Pooling 2D layer to simplify the 
extracted features into a more compact form. The output 
was then passed through a dense layer with 128 neurons 
and a ReLU activation function, helping the model 
recognize important patterns in the data. Subsequently, a 
dropout layer with a rate of 0.5 was added to prevent 
overfitting. Finally, a dense output layer was added, 
adjusted to match the number of target classes. 

G. Hyperparameter Tuning 
Hyperparameter tuning can be performed manually by 

testing a predefined set of hyperparameters one by one. In 
this study, hyperparameter tuning was carried out 
automatically using the Bayesian Optimization method. 
This method was chosen for its ability to efficiently 
optimize the objective function by leveraging information 

from previous searches to determine the most promising 
next combination [23]. The range of values explored during 
the hyperparameter tuning process is presented in Table II. 

 

TABLE II.  HYPERPARAMETER SEARCH RANGE 

Hyperparameter Value Range 

Unit Dense 32 to 512 

Dropout Rate 0,2 to 0,5 

Learning Rate 1e-6 to 1e-2 

H. Model Evaluation 
This process was conducted to evaluate the 

performance of the ResNet50 and EfficientNetB0 models 
in classifying throat diseases. The evaluation was carried 
out by testing the models on the test dataset using four 
metrics: accuracy, precision, recall, and F1-score [27]. All 
metrics were calculated based on the values of True 
Positive (TP), True Negative (TN), False Positive (FP), and 
False Negative (FN) derived from the confusion matrix. 
The formulas for each metric based on the confusion matrix 
are presented below. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = !"#!$
	!"#&"#!$#&$

   (1) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = !"
	!"#&"

   (2) 

𝑅𝑒𝑐𝑎𝑙𝑙 = !"
	!"#&$

   (3) 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 × (()*+,-,./×)*+122)
	(()*+,-,./#)*+122)

  (4) 

IV. RESULT AND DISCUSSION 

A. Data Augmentation 
Augmentation was applied only to the training data to 

increase variation and address class imbalance within the 
dataset. The augmentation techniques used include 
flipping, translation, rotation, and zooming. The results of 
the augmentation process are presented in Table III. 

 
 

TABLE III.  AUGMENTATION TECHNIQUES 

Augmentation Before After 

Flip 

  

Translation 
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Augmentation Before After 

Rotation 

  

Zoom 

  
After the augmentation process was applied to the 

training data, the number of augmented samples for each 
scenario of dataset division can be seen in Table IV. 

TABLE IV.  AUGMENTATION DATA 

Scenario Class 
Total 

Before After 

Dataset of 
Seven Classes  

Normal 20 60 

Chronic Laryngitis 3 60 

Acute Pharyngitis 16 60 

Chronic Pharyngitis 4 60 

Acute Tonsillitis 6 60 

Chronic Tonsillitis 18 60 

Acute 
Tonsillopharyngitis 12 60 

Dataset of Four 
Classes 

Normal 20 72 

Pharyngitis 23 72 

Tonsillitis 24 72 

Acute 
Tonsillopharyngitis 12 72 

Dataset of 
Three Classes 

Normal 20 108 

Pharyngitis 23 108 

Tonsillitis 36 108 

Dataset of Two 
Classes 

Normal 20 177 

Illness 59 177 

B. Model Evaluation 
The performance of the trained ResNet50 and 

EfficientNetB0 models was evaluated for the task of throat 
disease classification. The training process was conducted 
over 100 epochs with a learning rate of 1e-4 (0.0001), 
utilizing the Adam optimizer. To enhance training stability, 
callbacks were applied, including EarlyStopping which 
halts the training process when the val_loss metric stops 
improving and ModelCheckpoint, which stores the highest 
val_accuracy value achieved during training [13]. The 
performance of both ResNet50 and EfficientNetB0 models 
was assessed using a confusion matrix and standard 
evaluation metrics, namely accuracy, precision, recall, and 
F1-score. The following sections present the evaluation 
results of the models under several different experimental 
scenarios. 

B.1. Dataset of Seven Classes 
In this scenario, the dataset used is the original dataset 

consisting of seven classes. The test data from this dataset 
was evaluated using both the ResNet50 and EfficientNetB0 
models. The confusion matrix resulting from the evaluation 
of the ResNet50 dan EfficientNetB0 model is presented in 
Figure 2 dan Figure 3. 

 
Fig. 2.  Confusion Matrix ResNet50. 

 
Fig. 3.  Confusion Matrix EfficientNetB0. 

Based on Figures 2 and 3, both models still encountered 
difficulties in distinguishing images between classes. Both 
ResNet50 and EfficientNetB0 frequently misclassified 
acute tonsillitis and chronic tonsillitis. Specifically, the 
ResNet50 model tended to predict images of acute 
tonsillitis as chronic tonsillitis, while EfficientNetB0 often 
predicted chronic tonsillitis as acute tonsillitis. 
Additionally, ResNet50 misclassified images of chronic 
pharyngitis as acute pharyngitis. This misclassification 
may occur because the differentiation between acute and 
chronic conditions is primarily based on the duration of the 
illness experienced by the patient, whereas their anatomical 
locations are the same and their visual characteristics are 
nearly identical [28].  

Both models also misclassified normal images as acute 
pharyngitis. On the other hand, ResNet50 incorrectly 
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classified images of acute pharyngitis and chronic tonsillitis 
as normal. In contrast, EfficientNetB0 did not misclassify 
any diseased images as normal. Although both models 
successfully predicted chronic laryngitis images correctly, 
this result may be biased due to the small class size and 
extensive data augmentation [29]. The models’ difficulty in 
distinguishing between classes is further supported by the 
evaluation metric values presented in Table V. 

TABLE V.  PERFORMANCE EVALUATION OF THE SEVEN-CLASS 
SCENARIO 

Model Accuracy 
(%) 

Precision 
(%) 

Recall 
(%) 

F1-score 
(%) 

ResNet50 38,46 30,95 35,71 32,93 

EfficientNetB0 38,46 38,10 42,86 37,62 

Table V shows that both models achieved relatively low 
accuracy, precision, recall, and F1-score values, ranging 
from approximately 30% to 40% [27]. In the context of 
medical technology, recall indicates the model’s ability to 
correctly identify patients who are actually ill, whereas 
precision reflects the model’s ability to avoid 
misclassifying healthy individuals as diseased [30]. The 
low evaluation metric values suggest that neither model 
was able to accurately detect diseases or predict each class 
reliably.  

In this scenario, both models experienced overfitting. 
The models adapted too closely to the training data and 
failed to generalize well to the test data [13]. Overfitting 
may have been caused by a small and imbalanced dataset 
[29]. As a corrective strategy, a subsequent scenario was 
implemented involving class merging to reduce the 
models’ classification difficulty and enhance their 
performance in throat disease classification. Class merging 
under specific conditions can be an effective solution when 
facing challenges related to limited dataset size [31]. 

B.2. Dataset of Four Classes 
In this scenario, the original seven-class dataset was 

restructured into four classes: normal, pharyngitis, 
tonsillitis, and tonsillopharyngitis. The merging of acute 
and chronic cases of the same disease was carried out by 
considering their anatomical location and the visual 
similarity of the images [28]. The chronic laryngitis class 
was merged into the laryngitis class, as the anatomical 
location can visually overlap, particularly when 
inflammation spreads [28]. The normal and acute 
tonsillopharyngitis classes were retained due to their 
distinct visual characteristics and the sufficient number of 
available samples [29]. The confusion matrices resulting 
from the evaluation of the ResNet50 and EfficientNetB0 
models in this scenario are presented in Figures 4 and 5. 

 
Fig. 4.  Confusion Matrix ResNet50. 

 
Fig. 5.  Confusion Matrix EfficientNetB0. 

Based on Figure 4, the ResNet50 model no longer 
misclassified diseased images as normal. However, both 
models still misclassified one normal image as acute 
pharyngitis. In addition, both models incorrectly classified 
pharyngitis images as tonsillitis. The models also continued 
to confuse tonsillitis with acute tonsillopharyngitis, and 
vice versa. This confusion may have occurred because 
tonsillopharyngitis is a combined condition involving both 
tonsillitis and pharyngitis [28]. When the inflammation is 
more prominent in the tonsils, tonsillopharyngitis images 
are likely to be interpreted by the model as tonsillitis.  

These findings indicate that both models still struggle 
to differentiate between throat disease classes. This 
limitation may be due to the insufficient number of images 
per class, which hinders the models’ ability to fully learn 
and recognize throat disease patterns [29]. Additionally, 
low-quality or unclear medical images can present further 
challenges for classification models [32]. The difficulty 
faced by the models in distinguishing between classes is 
further supported by the evaluation metrics shown in Table 
VI.  
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TABLE VI.  PERFORMANCE EVALUATION OF THE FOUR-CLASS 
SCENARIO 

Model Accuracy 
(%) 

Precision 
(%) 

Recall 
(%) 

F1-score 
(%) 

ResNet50 41,67 50 43,57 44,58 

EfficientNetB0 41.67 45,83 37,50 40 

Table VI indicates that both models experienced a slight 
performance improvement in this scenario compared to the 
previous scenario with seven classes. Despite the 
improvement, the overall performance of both models 
remains suboptimal [27]. This is evident from the 
evaluation metric values, which are still relatively low, 
ranging between 40% and 50%. The fact that precision 
scores are higher than recall scores may also suggest that 
both models are experiencing overfitting [13]. This issue is 
primarily attributed to the limited amount of data and the 
imbalance in class distribution [29]. 

In this scenario, Hyperparameter tuning was applied to 
improve model performance by searching for the best 
hyperparameters. The hyperparameter tuning was 
conducted using the Bayesian Optimization method. After 
completing the tuning process using the specified method, 
the best hyperparameters obtained are presented in Table 
VII. 

TABLE VII.  BEST PARAMETERS IN THE FOUR-CLASS SCENARIO 

Model Hyperparameter Value Range 
ResNet50 Unit Dense 384 

Dropout Rate 0,4 

Learning Rate 0.00011964743859134101 

EfficientNetB0 Unit Dense 256 

Dropout Rate 0,2 

Learning Rate 0.0006748735068204596 

The comparison of two models with hyperparameter tuning 
can be seen in Table VIII. 

TABLE VIII.  COMPARISON TWO MODELS WITH HYPERPARAMETER 
TUNING IN THE FOUR-CLASS SCENARIO 

Model Accuracy 
(%) 

Precision 
(%) 

Recall 
(%) 

F1-score 
(%) 

BO ResNet50 83,3 66,7 66,7 66,7 

BO 
EfficientNetB0 

79,2 58,3 58,3 58,3 

After tuning, the performance of both the ResNet50 and 
EfficientNetB0 models improved, with ResNet50 slightly 
outperforming EfficientNetB0. This suggests that 
ResNet50 is more sensitive to hyperparameter 
configurations, whereas EfficientNetB0 tends to be more 
stable [33]. Nevertheless, the performance of both models 
remains suboptimal despite the application of 
hyperparameter tuning. Therefore, a subsequent scenario 
will be conducted.  

B.3. Dataset of Three Classes 
In the previous scenario, both models frequently 

confused tonsillitis with tonsillopharyngitis. Considering 
this, the tonsillopharyngitis class was merged into the 
tonsillitis class. As a result, this scenario includes three 
classes: normal, pharyngitis, and tonsillitis. After testing 
with the ResNet50 and EfficientNetB0 models, identical 
confusion matrices were obtained. The confusion matrices 
for both models are presented in Figure 6. 

 
Fig. 6.  Confusion Matrix ResNet50 dan EfficientNetB0. 

Based on Figure 6, in this scenario, both models 
successfully predicted all tonsillitis images accurately. 
However, both models consistently misclassified one 
normal image as pharyngitis and two pharyngitis images as 
tonsillitis. The models still tended to interpret pharyngitis 
images as tonsillitis. This may occur because, during a 
pharyngitis episode, the tonsils can also become inflamed 
[28]. A pharyngitis image may be misclassified as tonsillitis 
if the inflammation appears more prominent in the tonsillar 
region. The corresponding evaluation metric values are 
presented in Table IX. 

TABLE IX.  PERFORMANCE EVALUATION OF THE THREE-CLASS 
SCENARIO 

Model Accuracy 
(%) 

Precision 
(%) 

Recall 
(%) 

F1-score 
(%) 

ResNet50 72,73 73,81 66,67 67,78 

EfficientNetB0 72,73 73,81 66,67 67,78 

Table IX shows that the ResNet50 and EfficientNetB0 
models achieved improved accuracy, precision, recall, and 
F1-score values, ranging from approximately 60% to 70%. 
The identical results between the two models suggest that 
both made correct and incorrect predictions at the same 
points. This may be attributed to the small size of the test 
dataset, which could lead the models to recognize similar 
patterns with limited variation [29]. Interestingly, in the 
three-class classification scenario, the model performed 
better without data augmentation. This may be due to the 
high visual similarity between pharyngitis and tonsillitis, 
where basic augmentation techniques such as rotation or 
flipping could obscure important distinguishing features 
between the classes. Instead of improving performance, 
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augmentation on a small dataset may introduce variations 
that are not clinically relevant, potentially reducing the 
model’s accuracy. This indicates that data augmentation 
does not always enhance model performance, especially 
when the added variations fail to reflect meaningful or 
discriminative patterns relevant to the target classes. To 
further enhance model performance, hyperparameter 
tuning using Bayesian Optimization was applied in this 
scenario. The best hyperparameters obtained are presented 
in Table X. 

TABLE X.  BEST PARAMETERS IN THE THREE-CLASS SCENARIO 

Model Hyperparameter Value Range 
ResNet50 Unit Dense 174 

Dropout Rate 0.4855450747417324 

Learning Rate 0.0004015275311354817 
EfficientNetB0 Unit Dense 92 

Dropout Rate 0.4077502503662843 

Learning Rate 0.0020145932338176123 

The comparison of two models with hyperparameter tuning 
can be seen in Table XI. 

TABLE XI.  COMPARISON TWO MODELS WITH HYPERPARAMETER 
TUNING IN THE THREE-CLASS SCENARIO 

Model Accuracy 
(%) 

Precision 
(%) 

Recall 
(%) 

F1-score 
(%) 

BO ResNet50 81,82 90,48 77,78 77,78 

BO 
EfficientNetB0 72,73 73,81 66,67 67,78 

After tuning, the ResNet50 model demonstrated 
improved performance. In contrast, the performance of 
EfficientNetB0 did not show any improvement. This 
difference in response to tuning indicates that ResNet50 is 
more flexible with respect to configuration adjustments, 
allowing the tuning process to enhance its ability to 
recognize disease patterns [33]. On the other hand, 
EfficientNetB0, which is designed with an efficient 
architecture, tends to be stable but less responsive to 
hyperparameter changes, particularly when applied to 
small datasets [33].  

B.4. Dataset of Two Classes 
In this scenario, the pharyngitis and tonsillitis classes 

were merged into a single "diseased" class, while the 
normal class was retained. This merging was conducted 
because, in the previous scenario, both models struggled to 
distinguish between pharyngitis and tonsillitis. After testing 
with the ResNet50 and EfficientNetB0 models, identical 
confusion matrices were obtained. The confusion matrices 
for both models are presented in Figure 7. 

 
Fig. 7.  Confusion Matrix of ResNet50 and EfficientNetB0. 

Based on Figure 7, both models correctly predicted all 
images in the diseased class. However, both models 
consistently misclassified one normal image as diseased. 
When the two previously separate classes were merged, the 
models succeeded in making correct predictions. 
Nevertheless, misclassification in the class that was not 
merged still occurred. The evaluation metric values are 
presented in Table XII. 

TABLE XII.  PERFORMANCE EVALUATION OF THE TWO-CLASS 
SCENARIO 

Model Accuracy 
(%) 

Precision 
(%) 

Recall 
(%) 

F1-score 
(%) 

ResNet50 91,67 90 100 94,74 

EfficientNetB0 91,67 90 100 94,74 

The perfect recall value in Table XII indicates that the 
model did not miss a single diseased case in the test data, 
which is crucial in a medical context, as false negatives can 
pose serious risks [30]. However, the gap between 
precision and recall suggests the presence of false positives, 
specifically one normal case misclassified as diseased. 
Moreover, both models were still unable to overcome 
overfitting despite the implementation of EarlyStopping. In 
addition, the use of data augmentation in this two-class 
classification did not improve model performance, which 
contrasts with the results observed in the three-class 
classification. This is likely because the classification task 
is simpler, making the models less dependent on additional 
data variation. Therefore, further improvements are 
necessary to enhance the model’s ability to accurately 
identify the normal class, in order to prevent healthy 
individuals from being misdiagnosed.  

Overall, this scenario demonstrates improved 
performance compared to the previous multi-class 
scenarios. The class merging strategy successfully 
enhanced the model’s predictive capability [33]. However, 
this high performance may not fully reflect the model’s 
capacity in more complex classification tasks. Such 
simplification may obscure important distinctions between 
diseases and still leaves the model vulnerable to overfitting 
due to the limited dataset size and class imbalance.  
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V. CONCLUSION AND RECOMMENDATIONS 
Based on the findings of this study, it can be concluded 

that progressive class merging on a small dataset 
contributes to improved performance of CNN models in the 
task of throat disease classification. The accuracy, 
precision, recall, and F1-score of the two model 
architectures used ResNet50 and EfficientNetB0 increased 
as the number of classes was gradually reduced. 
Importantly, the class merging was carried out under 
specific considerations. In the case of throat diseases, the 
merging was based on anatomical location and visual 
similarity in medical images. Additionally, the ResNet50 
model responded more positively to hyperparameter tuning 
than EfficientNetB0, which tended to be more stable. 

This study has several limitations. First, the dataset size 
was very small (only 79 images), which may lead to 
overfitting and reduce the model’s ability to generalize to 
new data. Second, the imbalance in data distribution across 
classes required heavy augmentation in the smallest 
classes, which could affect classification accuracy, 
particularly in the multi-class scenario. Third, although 
binary classification yielded higher performance scores, it 
does not necessarily indicate that the model is capable of 
detecting specific disease types, as the classification was 
limited to distinguishing between normal and diseased 
cases without specifying the disease type in detail.  

For further model development, it is recommended to 
increase the amount of original data for each class, 
particularly for classes with very small sample sizes. This 
will allow the model to learn more representatively and 
reduce dependence on augmented data. Additionally, 
exploring other architectures is advisable to identify more 
optimal models for the multi-class classification of throat 
diseases. Incorporating model interpretability features, 
such as Grad-CAM, is also important to enable 
visualization of important image regions and support 
medical validation processes. Moreover, the findings of this 
study can be further developed into web-based or mobile 
applications to assist in the automatic early detection of 
throat diseases. Lastly, the use of ensemble methods can 
also be considered to combine the strengths of multiple 
model architectures in order to improve accuracy and 
robustness of the classification system. 
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