J-COSINE (Journal of Computer Science and Informatics Engineering)

Vol. 9, No. 2, December 2025

Accredited Sinta-4 by RISTEKDIKTI Decree No. 79/E/KPT /2023

E-ISSN:2541-0806
P-ISSN:2540-8895

Development of a Web-Based System for
Scientific Publication Data Management Using
NoSQL Architecture

Luthfiyyah Az Zahro', Heri Wijayanto, Wirarama Wedashwara

Dept Informatics Engineering, Mataram University
JI. Majapahit 62, Mataram, Lombok NTB, INDONESIA
Email: fiyyah.zahro@gmail.com, [heri, wirarama]@unram.ac.id

*Corresponding Author

Abstract This study developed a web-based system for
managing scientific publication data using a NoSQL
architecture (MongoDB) and an Extract, Load, Transform
(ELT) approach. The website allows users to easily access,
manage, and visualize data through an interactive interface
built with React.js on the frontend and Express.js on the
backend. The system supports data input via CSV uploads
and manual form submissions, with all data stored in
MongoDB Atlas. Data transformation is handled using the
Aggregation Pipeline, which performs normalization,
validation, and upsert operations to ensure consistency and
prevent duplication. Functional testing was conducted on 503
real publication records, while performance testing used
1,000 dummy records. The results show that the system can
support up to 20 concurrent users with an average response
time of 4,792 ms and no errors. Overall, the website offers a
flexible and integrated solution for managing scientific
publications in higher education institutions.

Key words: Scientific Publication Management, Website,
NoSQL, MongoDB, ELT.

1. INTRODUCTION

With the development of technology, big data has
become an important component in information
management and analysis. Initially, big data was
considered a challenge related to storage capacity in data
visualization. However, today the concept has evolved into
a term that describes data that is very large, diverse, and
unstructured, making it difficult to manage using
traditional methods [1]. This development requires new
technologies and methods to manage and analyze data on
a large scale. Big data has five main characteristics, known
as the 5Vs: volume, variety, velocity, veracity, and value
[2]. Among these five characteristics, variety is one of the
greatest challenges because it refers to the diversity of data
structures and formats, also known as heterogeneous data.

Heterogeneous data is information that comes in
various formats, locations, and structures. These
differences can include structured tables, text documents,
JSON files, and multimedia content such as images and
videos. In a university setting, heterogeneous data
encompasses academic, administrative, financial, and
scientific publication data. A key focus of this discussion
is scientific publication data, which continues to rise each

year. Publication data, such as journals, final projects,
proceedings, and research reports, is typically stored in
institutional repositories. These repositories manage a
variety of scientific documents, including theses, journals,
and other materials [3]. Differences in the formatting of
names, titles, affiliations, and publication years can
increase the necessity to integrate heterogeneous
information.

Data integration in heterogeneous systems refers to the
process of combining data from different format,
strucutures, and storages mechanisms [4]. Heterogeneous
data integration is essential to support analytics, real time
decision making, and machine learning applications [5].
However, it is not enough to intgrate heterogeneous
publication data. Another thing that needs to be considered
is how to maintain data consistency after integration.
Without consistency, the integrated data will cause new
problems such as duplication, entry conflicts, or
information redundancy [6]. This is directly related to
characteristics of veracity in Big Data, namely maintaining
accuracy and trust in the data used.

Meanwhile, the increasing volume and complexity of
publication data demands a management system that has
good scalability performance. Traditional system such as
Extract, Transform, Load (ETL) or relational databases
(SQL) that are batch-oriented, have limitations, both in
terms of data formats [7]. These systems also tend to be
less flexible in handling data changes and growth in web-
based applications. On the other hand, approaches using
NoSQL architecture are starting to be widely applied.
NoSQL systems are designed to handle unstructured data,
support heterogeneous data integration, and are capable of
horizontal scaling to accommodate the need for high
performance [5], [8].

This research aims to design and implement a
heterogeneous scientific publication data integration
process within the scope of higher education. The
integration process was carried out using MongoDB Atlas
to store and manage publication data. MongoDB was
chosen because it is a document-based NoSQL database
that supports dynamic schemas, semi-structured data
storage, and data transformation through aggregation
pipelines [9]. MongoDB was chosen because it can store

http://jcosine.if.unram.ac.id/

175

https://issn.lipi.go.id/terbit/detail/1473904380
https://issn.lipi.go.id/terbit/detail/1446087842

J-COSINE (Journal of Computer Science and Informatics Engineering)

Vol. 9, No. 2, December 2025

Accredited Sinta-4 by RISTEKDIKTI Decree No. 79/E/KPT /2023

E-ISSN:2541-0806
P-ISSN:2540-8895

data in a flexible document format and supports semi-
structured formats such as JSON, which is suitable for
diverse scientific publication metadata. Unlike Cassandra,
which is specifically designed to handle large-scale time-
series data and systems with high writing requirements,
MongoDB is more suitable for applications that require
schema flexibility and integration with user interfaces.[10].

Unlike previous studies that emphasized the integration
of homogeneous structures using traditional ETL flows and
relational databases, this study adopted an ELT (Extract,
Load, Transform) approach combined with a NoSQL
architecture to directly manage unstructured and semi-
structured metadata. Meanwhile, previous literature has
mostly discussed NoSQL scalability or metadata
transformation separately. This study presents an integrated
approach that combines the flexibility of heterogeneous
data integration with system performance evaluation,
particularly in terms of scalability and data consistency as
data volume continues to increase.

The novelty of this study lies in the application of a
comprehensive (end-to-end) integration process to various
publication metadata formats, using flexible and efficient
document modeling. Thus, this research contributes to the
development of a scientific publication management
system that is not only flexible and integrated but also
reliable in performance. Additionally, this research aligns
with current trends in academic data management and has
the potential to serve as a foundation for the development
of future academic information systems.

II. LITERATURE REVIEW

Various studies have been conducted on developing
information systems for managing scientific publication
metadata, covering aspects such as data storage,
transformation, and user interfaces. Key challenges in such
systems include inconsistent metadata structures, the need
for flexible input formats, and efficient validation and
deduplication processes. Some studies have focused on
institutional repository design, the use of flexible databases
like MongoDB, and automated data transformation
workflows. These works serve both as references and
evaluation benchmarks in designing a web-based scientific
publication management system that prioritizes efficient
data handling and high data quality.

Silva et al. [11] introduced EasyBDI, a logic-based data
integration system capable of schema mapping and query
transformation across heterogeneous data sources. While
the system supports diverse input formats such as manual
entry and CSV uploads, it does not address crucial issues
like metadata validation and deduplication in the context of
scientific publications. Complementing the schema
flexibility aspect, Cabral et al. [12] proposed a conceptual
modeling approach to generate schema-independent
queries for MongoDB. This allows for flexible metadata
access across varying document structures, although it
lacks mechanisms for data quality enhancement such as
validation or normalization.

Meanwhile, Reza et al. [3] emphasized the importance
of web-based institutional repository platforms through the
implementation of DSpace and the Dublin Core standard.
While effective in managing academic archives, this
approach remains limited to relational models and does not
leverage schema flexibility or transformation automation as
enabled by ELT. Locally, Anthony and Tony [13]
developed a faculty publication management system using
a manual approach with PostgreSQL. Although it improved
administrative efficiency, the system lacked bulk data
processing and automated transformation making ELT
implementation in this study a distinctive advantage.

Regarding data quality and consistency, Ye et al. [14]
proposed an entity resolution method using blocking and
matching techniques to handle duplication. This is
particularly relevant for scientific publication systems. In
this study, deduplication is implemented using upsert
operations and key attribute validation in MongoDB.
Furthermore, MongoDB's support for flexible structures
and high data loads is reinforced by findings from Mohan
et al. [15], who demonstrated NoSQL's performance
advantages in analytical scenarios. These findings support
the decision to use MongoDB as the system's storage
backbone. Additionally, Alflahi et al. [16] suggested
transaction management strategies in MongoDB to
maintain data integrity. Techniques such as separating
read-write operations, using upserts, and validating through
pipelines are also adopted in this system to support efficient
and consistent management of publication metadata at
scale.

TABLE I. TABLEOF SOTA

Title

Method

Result

Limitations

Logical Big Data Integration and
Near Real-time Data Analytics

Logical schema mapping, query
rewriting

Supports integration from various
data formats and structures

Does not handle deduplication or
metadata validation

Enabling Schema Independent
Data Retrieval Queries in
MongoDB

Entity conceptualization,
MongoDB query abstraction

Provides flexible access to data
across documents with different
schemas

Does not address metadata

validation or quality

Perancangan dan Implementasi
Institutional Repository dengan
Metada Dublin Core

Waterfall model, DSpace, Dublin
Core, PostgreSQL

Manages institutional archives
using standardized metadata
structure

Not flexible with heterogeneous
input and lacks automated data
transformation

Perancangan Aplikasi Manajemen
Data Publikasi dan Penelitian

Web-based system
jQuery), PostgreSQL

(Node.js,

Improves administrative efficiency
in managing publication data

Does not support bulk input and
has not implemented the ELT
transformation approach

Multi-Source Data Repairing: A
Comprehensive Survey

Blocking-based matching, entity
resolution framework

Reduces data duplication across
entities through matching

Not integrated into scientific
publication management systems

http://jcosine.if.unram.ac.id/

176

https://issn.lipi.go.id/terbit/detail/1473904380
https://issn.lipi.go.id/terbit/detail/1446087842

J-COSINE (Journal of Computer Science and Informatics Engineering)

Vol. 9, No. 2, December 2025

Accredited Sinta-4 by RISTEKDIKTI Decree No. 79/E/KPT /2023

E-ISSN:2541-0806
P-ISSN:2540-8895

Evaluating NoSQL Database for | Benchmark testing on large | MongoDB efficiently handles big | Not focused on the domain of
OLAP Workloads: A | workloads data workloads scientific publication metadata
Benchmarking Study of

MongoDB, Redis, Kudu, and

ArangoDB

Enhancement of Database Access
Performance by Improving Data
Consistency in Non-Relational
Database System (NoSQL)

Upsert, pipeline validation

Does not address integration of
data from diverse publication input
formats

Improves consistency and
efficiency in bulk data processing

Table I presents a summary of various approaches from
previous research that are relevant in developing a
scientific publication data management system. Each study
has its own focus, such as schema mapping, query
flexibility, system performance optimization, as well as
data consistency and validity. Although these studies
contribute significantly, most still have limitations,
particularly in the direct application of flexible scientific
repository systems, handling metadata entry duplication,
and performing dynamic data transformation from various
input formats. Therefore, this research proposes a more
integrated approach through the development of a
MongoDB-based system that supports the ELT (Extract,
Load, Transform) process, duplication detection and
handling using upsert techniques and aggregation
pipelines, and accommodates data input both via CSV file
uploads and manual form entries. This strategy is expected
to address the key challenges that have not been fully
resolved by previous studies.

III. RESEARCH METHODOLOGY

This research was conducted using the Research and
Development (R&D) approach method with the aim of
developing and evaluating a scientific publication data
integration system using NoSQL architecture. To clarify
the research flow, Fig. 1 presents the process sequence
from the start to finish in a structured and systematic
manner.

- —
(\ Start >

Planning Design

System
Implementation

Retrospective Testing

-
-

’/ End 7\\
A

Fig. 1. Research Flow

Fig. 1 shows the flow of research stages using an
iterative approach, which allows for iterative evaluation
and improvement of the system until the results obtained
meet the research objectives. The research process starts
from planning, design, system implementation, and
testing. The test results carried out at the testing stage will
be evaluated in the appropriate. If it is not appropriate, the

improvements will be made at the retrospective stage. If it
is appropriate, the process will be stopped. The flow
illustrates the XP principle that emphasizes continuous
improvement.

A. Planning

The first stage is the planning stage, which includes the
identification of needs and the formulation of problems. At
this stage, a literature review of NoSQL architecture, the
ELT method, and heterogeneous data integration
techniques was conducted. Furthermore, this stage also
determines the tools and technologies, such as MongoDB,
React, and Express.js, to ensure the system development
process runs effectively and meets its objectives.

B. Design

The second stage after planning is system design. At
this stage, an overall architecture is designed that includes
the frontend, backend, and database.

B.1. Use Case Diagram

Fig. 2. Use Case Diagram

Fig. 2 illustrates the interaction between users and the
system in managing scientific publication data. There are
two main actors, namely Admin and User. Admins must
first log in to acces all system features, such as viewing
dashboards, adding data, editing, and deleting publication
data. Meanwhile, User have limited access rights, which
can only view statistics, search for publications, view lists
and details of scientific publications without the need to
log in.

http://jcosine.if.unram.ac.id/

177

https://issn.lipi.go.id/terbit/detail/1473904380
https://issn.lipi.go.id/terbit/detail/1446087842

J-COSINE (Journal of Computer Science and Informatics Engineering)

Vol. 9, No. 2, December 2025

Accredited Sinta-4 by RISTEKDIKTI Decree No. 79/E/KPT /2023

E-ISSN:2541-0806
P-ISSN:2540-8895

B.2. Flowchart Diagram

(N
/

3

Fig. 3. Flowchart Diagram

As illustrated in Fig. 3, the flowchart on the left
represents the interaction flow for general users. The
process begins on the homepage, where users can search
for publications using specific keywords. The system will
then display a list of relevant publications. When a user
selects an entry, the system presents the complete details
of the publication. If available, users can also download
the associated publication file before returning to the
publication list. This flow does not require authentication
and is designed to support open and user-friendly data
exploration.

On the other hand, the flowchart on the right outlines
the process flow for users with admin privileges. The
admin begins by logging into the system, and upon
successful authentication, is directed to the dashboard.
From there, the admin can manage publications by adding,
updating, or deleting data. After any action is performed,
the system displays a confirmation message indicating that
the operation was successful. This flow is designed to
maintain data integrity and consistency by enabling direct
management of the MongoDB database through backend
API interactions.

B.3. Activity Diagram

Add Publication Data by Uploading Files

Admin Sistem Database

Fig. 4. Activity Diagram

Fig. 4 is one of the activity diagrams in this study,
illustrating the process flow of adding publication data
through the file upload feature by the admin. This diagram
describes the interaction between three main components
Admin, System, and Database in handling the upload,
storage, and transformation of publication data.

B.4. Data Schema Structure

{
" id": "ObjectId",
"ID Jurnal": "String",
"Judul Jurnal": "String",
"Nama Jurnal": "String",
"URL Jurnal": "String",
"File Jurnal": "String",
"Tahun Jurnal"”: "Number",
"Bulan Jurnal": "Number",
"Nama Prodi": "String",
"Data Personil": {
"ketua": "String",
"anggota": [
"String", // anggotal
"String", // anggota?
]
}
}

The data structure of scientific publications is stored as
JSON documents in MongoDB, which includes metadata
information of scientific publications. For personnel data,
it is organized in a nested manner through the
‘Data_Personil’ object, which contains the name of the
chairperson and a list of author members. This format
takes advantage of MongoDB’s flexibility to handle
structured and semi-structured data, and supports efficient
searching and data transformation.

B.5. System Architeture Diagram

Filter, Search, Visualisasi

React.js Express.js
Frontend Backend

<R
I REST CRUD,

MongoDB

Atlas

Database

API Integrasi L_NoSQL

MongoDB Atlas
Database NoSQL

Import Data

Fig. 5. System Architecture Diagram

Based on Fig. 5, this system architecture consists of
three main components, namely React.js as the frontend,
Express.js as the backend, and MongoDB Atlas as the
NoSQL database. React.js is used to input manual data and
upload CSV files, then the data is sent to the backend via
REST API. The backend with Express.js processes,
validates, and saves the data to MongoDB. The data
transformation process is performed using Aggregation
Pipeline after the data enters collection. The systems is
designed to effectively manage heteregeneous data and
support efficient searching, filtering, and visualization of
data.

http://jcosine.if.unram.ac.id/

178

https://issn.lipi.go.id/terbit/detail/1473904380
https://issn.lipi.go.id/terbit/detail/1446087842

J-COSINE (Journal of Computer Science and Informatics Engineering)

Vol. 9, No. 2, December 2025

Accredited Sinta-4 by RISTEKDIKTI Decree No. 79/E/KPT /2023

E-ISSN:2541-0806
P-ISSN:2540-8895

C. System Implementation

The system implementation phase is designed to
support the efficient and structured management and
processing of scientific publication data from various study
programs. The system consists of three main components:
the frontend, the backend, and the NoSQL database. The
frontend, built with React.js, offers two methods for data
input: uploading a CSV file and manually entering data
through a form. Once submitted, the data is sent to the
backend in JSON format for further processing.

The backend, developed using Express.js, acts as a
bridge between the user interface and the database. It is
responsible for processing the received data and storing it
in the initial raw_publications collection within MongoDB
Atlas. In addition, the backend is equipped with specific
endpoints that trigger the data transformation process once
loading is complete.

MongoDB Atlas serves as the NoSQL database
solution, supporting the storage of semi-structured data.
The raw_publications collection temporarily holds raw data
in its original format. The transformation process is
designed to run automatically using the MongoDB
Aggregation Pipeline. This process involves several stages:
$project reshapes the metadata structure, $addFields
adjusts attribute formats, and $match filters for valid
records. The final stage, $merge, saves the transformed data
into the target publications collection. To avoid duplication,
the system applies an upsert logic based on a combination
of key attributes.

D. Testing

System testing was divided into two categories:
functional and non-functional testing. Functional testing
was carried out using the black-box method to ensure that
all features operated as expected, including manual data
input, CSV file wuploads, search, filtering, data
visualization, and CRUD operations. Meanwhile, non-
functional testing focused on evaluating the system’s
performance and scalability. This involved simulating
large-scale data processing to assess stability, response
time, and data consistency throughout the Extract, Load,
and Transform (ELT) process. Scalability was tested using
stress and spike testing methods, while data consistency
was evaluated through duplication checks.

E. Retrospective

The retrospective stage is an evaluation process to
review the results of work in one development cycle,
identify things that went well and thing that need to be
imporved, and formulate improvement steps for the next
iteration.

IV. RESULTS AND DISCUSSION

This section presents the results of the development
process for the scientific publication data management
website, including the implementation of the user interface,
core features, and data processing mechanisms that enable
efficient metadata management. In addition, it discusses the

outcomes of both functional and non-functional testing to
evaluate the system’s overall performance and reliability.

A. System Implementation Results

After the system components were fully developed, the
implementation phase began by building a web interface
integrated with both the backend and the database. The
interface is designed to allow users to efficiently access,
search, filter, and manage scientific publication data
through an interactive and responsive platform.

@y Bersnda Publtasi

Selamat Datang di Publikasi Imliah FT UNRAM

Jahi publik ki dari shitar ckademika Fakultae Toknk

Fig. 6. Homepage

Fig. 6 shows the homepage of the scientific publication
management website for the Faculty of Engineering at the
University of Mataram. This page serves as the main entry
point for users to access publication information. It features
a header with navigation menus, including "Home" and
"Publications," as well as a search function that allows
users to find publications using specific keywords. The
interface is designed to be simple and intuitive, making it
easy to use for a wide range of users, including lecturers,
students, and administrative staff,

a

Fier PENGUNAAN MESIN PENGUPAS KULIT KOPI UNTUK PETANI KOPI DI DUSUN SELELOS
KECAMATAN GANGGA LOMBOK UTARA

SOSIALISASI SISTEM PROTEKS! PETIR UNTUK MELINDUNGI GEDUNG DAN MAHLUK
HIDUP DI DALAM DAN DI SEKITAR GEDUNG

Fig. 7. Search, Filter, and List Publications

In Fig. 7, the search, filter, and list features of
publications are shown, which can be accessed by all users
without the need to login. Users can enter certain keywords
in the search field, such as publication title or author name,
to find relevant data. In addition, filter options are available
based on study program and publication year, which helps
users filter data more specifically.

http://jcosine.if.unram.ac.id/

179

https://issn.lipi.go.id/terbit/detail/1473904380
https://issn.lipi.go.id/terbit/detail/1446087842

J-COSINE (Journal of Computer Science and Informatics Engineering)

Vol. 9, No. 2, December 2025

Accredited Sinta-4 by RISTEKDIKTI Decree No. 79/E/KPT /2023

E-ISSN:2541-0806
P-ISSN:2540-8895

@

Detail Publikasi

PENGUNAAN MESIN PENGUPAS KULIT KOPI UNTUK PETANI KOPI DI DUSUN SELELOS KECAMATAN GANGGA
LOMBOK UTAR/

T

Fig. 8. Detail Publications

Based on Fig. 8, the publication details page is
displayed, which contains the complate metadata of a
scientific publication entry. This page provides a more
comprehensive view than the publication list, allowing
users to review the content and context of a publication
before downloading or referring to it. All data is
dynamically pulled from MongoDb database based on the
selected publication ID.

Admin Login

Fig. 9. Login Page

Fig. 9 shows the login page used by the admin to access
the publication data management feature. Login is done by
entering the username and password that has been
registered previously. After a successful authentication
process, the admin will be directed to the dashboard page
and features such as add, change, and delete publications
are available. The login page serves as an access
restriction, so that only users with certain authorities can
make changes to publication data.

Admin Panel

Dashboard Admin

Pl Dashboard

5 Publikasi

Distribusi Jurnal Per Bulan Tahun 2024 Distribusi Jumlah Publikasi Per Prodi

Fig. 10. Dashboard Admin

The admin dashboard display in this system is designed
to facilitate the monitoring and analysis of scientific

publication data stored in the database. The dashboard
displays a number of key indicators such as total journals,
number of journals in 2024, number of study programs,
number of unique authors, and total publications from the
five study programs with the highest contributions. At the
top, there is a year filter feature that allows admins to
costumize the data display based on the year of publication.
Data visualization is presented through two graphs, namely
a line graph illustration the distribution of journals per
month in the selected year and a bar graph showing the
distribution of publication counts per academic program.
This visualization aims to provide a clear overview of
scientific publication trends and the contribution levels of
each academic program within the Faculty of Engineering.

‘Admin Panel Manajemen Publikasi

) Dashboard

5 Publikasi

Fig. 11. Manage Publications Data

As shown in Fig. 11, the publication data management
feature is accessible only to admin users after successful
login. Through this page, admins can perform three main
operations: adding, editing, and deleting scientific
publication records stored in the MongoDB database. There
are two methods for adding data. The first is by filling out
a form containing multiple metadata fields. The submitted
form data is sent in JSON format to the backend, where it
follows the same processing flow as a CSV upload: it is first
stored in the raw publications collection, then
automatically transformed through the ELT process using
the MongoDB Aggregation Pipeline. This ensures that both
manual and bulk inputs result in consistent and valid final
data.

The second method allows admins to upload a CSV file
containing multiple publication records at once. In this
approach, the system automatically stores the raw data in a
temporary collection and immediately triggers the
transformation process on the backend. This process
includes text format normalization, required attribute
validation, restructuring of the Data Personil field, and
final storage into the publications collection using an upsert
mechanism to prevent duplication. This approach follows
the Extract, Load, Transform (ELT) principle, where data
processing occurs after loading, making it more flexible in
handling varying input structures.

An example of the final transformed data is shown in
the document snippet in Fig. 12, which is stored in the
publications collection in MongoDB. This JSON format

http://jcosine.if.unram.ac.id/

180

https://issn.lipi.go.id/terbit/detail/1473904380
https://issn.lipi.go.id/terbit/detail/1446087842

J-COSINE (Journal of Computer Science and Informatics Engineering)

Vol. 9, No. 2, December 2025

Accredited Sinta-4 by RISTEKDIKTI Decree No. 79/E/KPT /2023

E-ISSN:2541-0806
P-ISSN:2540-8895

represents the normalized and validated metadata of a
scientific publication successfully processed by the system.

_id: ObjectI 5db63a
ID_Jurnal: "38919"
Judul_Jurnal : "PENGUNAAN MESIN PENGUPAS KULIT KOPI UNTUK PETANI KOPI DI DUSUN SELELOS.."

e0bef1149f7ffe

Nama_Jurnal :
URL_Jurnal :
File_Jurnal :

am.ac.id/index.php/pepadu/article/view/687"

unram. sgpl.digitaloceanspaces.com/simlitabmas/kinerja/pengabdi.."
Tahun_Jurnal
Bulan_Jurnal
Nama_Prodi : "S1 Teknik Mesin"

~ Data_Personil : Object

1: AWA SU
2: "RUDY SUTANTO. ST..
3: "Maharsa Pradityatama, S.T., M.Sc."

Fig. 12. Result of Database

In addition to adding new records, admins can also edit
existing publication data. The system displays the current
data in an editable form, allowing admins to make updates
directly and save the changes back to the database. Any
modifications are immediately reflected in the user-facing
publication list. For entries that are irrelevant or contain
incorrect information, a delete feature is available, enabling
admins to remove specific publications. To prevent
accidental deletions, the system prompts a confirmation
message before proceeding. All data management
operations are designed to interact directly with the
MongoDB NoSQL database through backend APIs,
ensuring efficient and consistent processes for storing,
updating, and deleting data.

B. Testing

System testing is carried out to ensure that all features
have run according to function and the system meets the
required quality standards. Testing is done thoroughly on
the functional (features) and non-functional (performance
in scalability and data consistency).

B.1. Functional Testing

Functional testing uses the Black Box testing method,
which is a testing method based on input and output without
paying attention to the internal processes of the system,
which aims to ensure that each feature on the system work
correctly according to user needs. That results of functional
testing are shown in Table II1.

TABLE II. RESULTS OF FUNCTIONAL TESTING

Featured Input/Test Expected
No Tested Case Output Remarks
Admin Valid Redirected to
1. Logi username and | admin Successful
ogin password dashboard
. Incorrect
2. f(()irrllrlln username or Err(;ra;rslessage Successful
& password PP
- Display a list
3. Publication ‘I‘(eyW(-)r(%’ of relevant Successful
Search website .
publications
Filter by Select Dtilsgll)iljzi/ti(())rrlfsy
4. Study “Informatics P Successful
. L from that
Program Engineering
program
. Display only
5. Filter by Select “2023” | publications Successful
Year
from that year

View Click detail D‘Spl';‘yt
6. Publication | buttononone | SOPC¢ Successful
Details entry publication
detail page
Add Fillall filds | D4
7. Publication | and click Y Successful
. added to the
(Form) submit
system
Add All data from
Publication | Upload valid the file
8 (Upload CSV file successfully Successful
File) added
Edit Chage the Changes saved
9. Publication | title and click | and displayed Successful
Data save to the user
Delete Click delete Data removed
10. L button and from the Successful
Publication
confirm system
1 Admin Click logout Redlr.ect back Successful
Logout button tologin page

Table II shows that all the main features of the system
are working well. Login successfully verifies credentials,
search and publication filters work according to keywords,
and publication details can be displayed correctly. Data
addition, either through forms or CSV, successfully saves
new data. Edit and delete features function as expected, and
logout redirects back to the login page. All test scenarios
produce appropriate outputs, indicating that the system is
functioning stably and according to user needs.

B.2. Non-Functional Testing

Non-functional testing aims to evaluate aspects of the
system that are not directly related to functional output, but
still have a significant impact on the overall quality and
reliability of the system. In this study, non-functional
testing was carried out with two main components, namely
system performance, particularly in terms of scalability and
data consistency. The evaluation of scalability was
conducted to measure the extent to which the system is
capable of handling large requests within a limited time,
especially during mass data uploads. This testing focused
on the ‘POST api/elt/upload-and-transform’ endpoint,
which plays an important role in handling CSV file uploads
and storing scientific publication data in the MongoDB
database.

To simulate large-scale data processing, a file
containing 1,000 dummy publication entries was used. This
dummy data was deliberately designed to resemble the
structure and level of complexity of the original dataset,
enabling it to realistically represent high system load
conditions. This strategy allows for more optimal
evaluation of system capacity limits without being
constrained by the limitations of the actual dataset, which
tends to be smaller. The five configuration scenarios used
in the scalability testing are presented in Table I'V.

TABLE III. CONFIGURATION USED FOR SCALABILITY TESTING

Configuration Number of Ramp-Up Data Volume
Threads
Test 1 10 30 sec 1,000
Test 2 20 30 sec 1,000

http://jcosine.if.unram.ac.id/

181

https://issn.lipi.go.id/terbit/detail/1473904380
https://issn.lipi.go.id/terbit/detail/1446087842

J-COSINE (Journal of Computer Science and Informatics Engineering)

Vol. 9, No. 2, December 2025

Accredited Sinta-4 by RISTEKDIKTI Decree No. 79/E/KPT /2023

E-ISSN:2541-0806
P-ISSN:2540-8895

Test 3 50 30 sec 1,000
Test 4 100 30 sec 1,000
Test 5 (Spike) 100 1 sec 1,000

TABLE IV. RESULTS OF SCALABILITY TESTING

. Avg Res Throughput
Configuration Tin%e (ms) Error (requesgt /nliin)
Test 1 4.792 0.00% 12.5
Test 2 100.533 0.00% 2.8
Test 3 348.547 22.58% 1.5
Test 4 889.794 61.73% 1.7
Test 5 588.022 88.97% 3.8

Based on the scalability test results shown in Table V,
the system shows significant performance differences as
the number of threads or simultaneous users increases. In
Test 1 (10 users), the system showed the best performance
with an average response time of 4.792 ms, no errors
(0.00%), and a throughput of 12.5 requests per minute. This
reflects that the system performs very well under low load.
However, in Test 2 and Test 3 (with 20 and 50 users), there
was a significant increase in response time to 100.533 ms
and 348.547 ms, respectively, along with the emergence of
errors up to 22.58%. This indicates that the system begins
to experience bottlenecks when handling higher parallel
loads.

Conditions worsened in Test 4 and Test 5 (100 users),
where the error rate reached 61.73% and 88.97%
respectively, with the average response time reaching
nearly 15 minutes. Although throughput was relatively
stable (1.5-3.8 requests per minute), this did not reflect the
system's success, but rather that requests were processed or
failed in a consistent manner. The combination of high
response times and high failure rates indicates that the load
of data storage and transformation processes on the
backend (MongoDB) became a critical point for this
system.

When compared to systems in previous studies, such as
those conducted by Yerra (2025), the performance
difference becomes even more evident. Yerra implemented
an ETL pipeline using SSIS and achieved high efficiency
in large-scale data integration through optimization
techniques such as Fast Load, buffer settings, and batch
inserts. The processing time achieved in that study was
significantly faster, even when processing large volumes of
data repeatedly. Meanwhile, the system in this study uses
an ELT approach with Node.js and MongoDB, which,
although flexible and modern, has not been optimized in
terms of batch processing and concurrency control. This
indicates that there is still significant room for performance
improvement, particularly in batching configuration, the
use of the bulkWrite() method with upsert, and system
tuning to match the performance of similar systems
discussed in the literature.

Thus, Test 1 configuration can be considered the most
balanced as it maintains system stability and integrity under
light load conditions. However, to achieve performance
comparable to other systems in the literature, technical

enhancements are required, particularly in parallel
processing of large data and storage efficiency in
MongoDB.

Next, a data consistency test was conducted to
evaluate the system's ability to prevent duplicate data
storage in the ‘publications’ collection. This test focused on
ensuring that after the data integration process, especially
during scalability testing, there was no data duplication in
the collection. This test is important because repeatedly
loading data with the same file has the potential to create
identical data copies. In the ‘publications’ collection, the
system is designed to store only one version of each data
entry and automatically ignore other identical copies. This
is based on a combination of key attributes, namely
‘Judul Jurnal’, ‘Tahun Jurnal’, and ‘Ketua’. To detect
duplicates after the upload process, an aggregation query is
performed on the ‘publications’ collection using the
combination of these three attributes. The query used is as

follows:
db.publications.aggregate ([
{

Sgroup: {
_dd: |

Judul Jurnal: "$Judul Jurnal",

Tahun Jurnal: "$Tahun Jurnal",

Ketua: "S$Data Personil.Ketua"

} 4
count:

}

{$sum: 1}

}I

{
Smatch: {
count:

}

{$gt: 1}

}

1)

After the query was performed, the result was that the
query returned an empty array ([]) in every test. This shows
that the system successfully maintained data integrity even
under high load pressure. In addition, the results also
reinforce that the storage and validation mechanisms
implemented in the system, including unique index settings
and attribute mapping, have functioned effectively to
prevent data duplication in this system.

V. CONCLUSION AND SUGGESTIONS

This study successfully designed and implemented a
web-based scientific publication data management system
using a NoSQL architecture, with MongoDB Atlas as the
database and an Extract, Load, Transform (ELT) approach.
The system is capable of handling varying metadata
structures from different study programs within the
Faculty of Engineering at UNRAM, through both manual
input and CSV file uploads. Data transformation and
validation are performed automatically using the
Aggregation Pipeline to normalize the structure, remove
duplicates, and ensure consistent data storage.

Functional testing showed that all key features such as
search, filtering, data management (CRUD), and
visualization worked as intended. However, since the
testing was conducted by the developer, the results are

http://jcosine.if.unram.ac.id/

182

https://issn.lipi.go.id/terbit/detail/1473904380
https://issn.lipi.go.id/terbit/detail/1446087842

J-COSINE (Journal of Computer Science and Informatics Engineering)

Vol. 9, No. 2, December 2025

Accredited Sinta-4 by RISTEKDIKTI Decree No. 79/E/KPT /2023

E-ISSN:2541-0806
P-ISSN:2540-8895

internally valid but still require further testing by external
users for more objective evaluation. From a non-functional
perspective, the system performs optimally under light
loads (up to 10 users), but performance degrades under
heavy loads. Consistency tests also showed that the system
can technically prevent identical data, but it still struggles
with detecting semantic similarity, such as variations in
name spelling. This highlights the need to further develop
smarter entity matching features.

For future development, it is recommended to optimize
backend performance using batch processing or the
bulkWrite() method, and to add name-matching
algorithms (e.g., fuzzy matching) to detect duplicates
despite spelling differences. The system should also be
enhanced with advanced authentication, integration with
institutional systems, and monitoring and analytics

features to support long-term sustainability and
functionality expansion.
REFERENCES

[1] A. A. Aydin, “A Comparative Perspective on
Technologies of Big Data Value Chain,” /EEE
Access, vol. 11, 2023, doi:
10.1109/ACCESS.2023.3323160.

[2] V. Keskar*, Dr.J. Y. Yadav, and Dr. A. H. Kumar,
“5V’s of Big Data Attributes and their Relevance
and Importance across Domains,” International
Journal of Innovative Technology and Exploring
Engineering, vol. 9, no. 11, pp. 154-163, Sep.
2020, doi: 10.35940/ijitee.K7709.0991120.

[3] F. Reza, I. K. D. Indah, and M. Ropianto,
“Perancangan Dan Implementasi Institutional
Repository Dengan Metadata Dublin Core,”
Jurnal Komteklnfo, pp. 125-132, Dec. 2022, doi:
10.35134/komtekinfo.v9i4.318.

[4] S. J. Pipin, “BIG DATA (Mengenal Big Data &
Implementasinya di Berbagai Bidang),” 2024.

[Online]. Available:
https://www.researchgate.net/publication/378313
489

[5] N. Reddy Mandala, “Data Integration in
Heterogeneous Systems”, doi:

10.56472/25832646/JETA-V214P122.
[6] I. M. Putrama and P. Martinek, “Heterogeneous
data integration: Challenges and opportunities,”

(]

[10]

[11]

Oct. 01, 2024, Elsevier Inc. doi:
10.1016/j.dib.2024.110853.

P. Badgujar, “Optimizing ETL Processes for
Large-Scale Data Warehouses,” 2020. doi:
https://doi.org/10.52783/jisem.v10i8s.1130.

W. Khan, T. Kumar, C. Zhang, K. Raj, A. M. Roy,
and B. Luo, “SQL and NoSQL Database Software
Architecture ~ Performance Analysis and
Assessments—A Systematic Literature Review,”
2023. doi: 10.3390/bdecc7020097.

“Comparative Case Study Difference Between
Azure Cloud SQL and Mongo Atlas MongoDB
NoSQL Database,” International Journal of
Emerging Trends in Engineering Research, vol. 9,
no. 7, 2021, doi: 10.30534/ijeter/2021/26972021.
B. Balusamy, N. Abirami. R, S. Kadry, and A. H.
Gandomi, “Big Data: Concepts, Technology, and
Architecture,” 2021.

B. Silva, J. Moreira, and R. L. de C. Costa,
“Logical big data integration and near real-time
data analytics,” Data Knowl Eng, vol. 146, Jul.
2023, doi: 10.1016/j.datak.2023.102185.

J. V. L. Cabral, V. E. R. Noguera, R. R. Ciferri,
and D. Lucrédio, “Enabling schema-independent
data retrieval queries in MongoDB,” Inf Syst, vol.
114, 2023, doi: 10.1016/5.15.2023.102165.

E. Anthony and Tony, “PERANCANGAN
APLIKASI MANAJEMEN DATA PUBLIKASI
DAN PENELITIAN,” JIKSI, 2024, doi:
https://doi.org/10.24912/jiksi.v12i2.31564.

C. Ye, H. Duan, H. Zhang, H. Zhang, H. Wang,
and G. Dai, “Multi-Source Data Repairing: A
Comprehensive Survey,” May 01, 2023, MDPI.
doi: 10.3390/math11102314.

R. K. Mohan, R. R. S. Kanmani, K. A. Ganesan,
and N. Ramasubramanian, “Evaluating NoSQL
Databases for OLAP Workloads: A
Benchmarking Study of MongoDB, Redis, Kudu
and ArangoDB,” May 2024, doi:
https://doi.org/10.48550/arXiv.2405.17731.

A. A. E. Alflahi, M. A. Y. Mohammed, and A.
Alsammani, “Enhancement of database access
performance by improving data consistency in a
non-relational database system (NoSQL),” 2023.
doi: https://doi.org/10.48550/arXiv.2308.13921.

http://jcosine.if.unram.ac.id/

183

https://issn.lipi.go.id/terbit/detail/1473904380
https://issn.lipi.go.id/terbit/detail/1446087842

