
 
 

 

Development of a Web-Based System for 
Scientific Publication Data Management Using 

NoSQL Architecture  
Luthfiyyah Az Zahro*, Heri Wijayanto, Wirarama Wedashwara 

Dept Informatics Engineering, Mataram University  
Jl. Majapahit 62, Mataram, Lombok NTB, INDONESIA  

Email: fiyyah.zahro@gmail.com, [heri, wirarama]@unram.ac.id 

*Corresponding Author 

 
Abstract This study developed a web-based system for 

managing scientific publication data using a NoSQL 
architecture (MongoDB) and an Extract, Load, Transform 
(ELT) approach. The website allows users to easily access, 
manage, and visualize data through an interactive interface 
built with React.js on the frontend and Express.js on the 
backend. The system supports data input via CSV uploads 
and manual form submissions, with all data stored in 
MongoDB Atlas. Data transformation is handled using the 
Aggregation Pipeline, which performs normalization, 
validation, and upsert operations to ensure consistency and 
prevent duplication. Functional testing was conducted on 503 
real publication records, while performance testing used 
1,000 dummy records. The results show that the system can 
support up to 20 concurrent users with an average response 
time of 4,792 ms and no errors. Overall, the website offers a 
flexible and integrated solution for managing scientific 
publications in higher education institutions. 

Key words: Scientific Publication Management, Website, 
NoSQL, MongoDB, ELT. 

I. INTRODUCTION  
With the development of technology, big data has 

become an important component in information 
management and analysis. Initially, big data was 
considered a challenge related to storage capacity in data 
visualization. However, today the concept has evolved into 
a term that describes data that is very large, diverse, and 
unstructured, making it difficult to manage using 
traditional methods [1]. This development requires new 
technologies and methods to manage and analyze data on 
a large scale. Big data has five main characteristics, known 
as the 5Vs: volume, variety, velocity, veracity, and value 
[2]. Among these five characteristics, variety is one of the 
greatest challenges because it refers to the diversity of data 
structures and formats, also known as heterogeneous data. 

Heterogeneous data is information that comes in 
various formats, locations, and structures. These 
differences can include structured tables, text documents, 
JSON files, and multimedia content such as images and 
videos. In a university setting, heterogeneous data 
encompasses academic, administrative, financial, and 
scientific publication data. A key focus of this discussion 
is scientific publication data, which continues to rise each 

year. Publication data, such as journals, final projects, 
proceedings, and research reports, is typically stored in 
institutional repositories. These repositories manage a 
variety of scientific documents, including theses, journals, 
and other materials [3]. Differences in the formatting of 
names, titles, affiliations, and publication years can 
increase the necessity to integrate heterogeneous 
information. 

Data integration in heterogeneous systems refers to the 
process of combining data from different format, 
strucutures, and storages mechanisms [4]. Heterogeneous 
data integration is essential to support analytics, real time 
decision making, and machine learning applications [5]. 
However, it is not enough to intgrate heterogeneous 
publication data. Another thing that needs to be considered 
is how to maintain data consistency after integration. 
Without consistency, the integrated data will cause new 
problems such as duplication, entry conflicts, or 
information redundancy [6]. This is directly related to 
characteristics of veracity in Big Data, namely maintaining 
accuracy and trust in the data used. 

Meanwhile, the increasing volume and complexity of 
publication data demands a management system that has 
good scalability performance. Traditional system such as 
Extract, Transform, Load (ETL) or relational databases 
(SQL) that are batch-oriented, have limitations, both in 
terms of data formats [7]. These systems also tend to be 
less flexible in handling data changes and growth in web-
based applications. On the other hand, approaches using 
NoSQL architecture are starting to be widely applied. 
NoSQL systems are designed to handle unstructured data, 
support heterogeneous data integration, and are capable of 
horizontal scaling to accommodate the need for high 
performance [5], [8]. 

This research aims to design and implement a 
heterogeneous scientific publication data integration 
process within the scope of higher education. The 
integration process was carried out using MongoDB Atlas 
to store and manage publication data. MongoDB was 
chosen because it is a document-based NoSQL database 
that supports dynamic schemas, semi-structured data 
storage, and data transformation through aggregation 
pipelines [9]. MongoDB was chosen because it can store 

J-COSINE (Journal of Computer Science and Informatics Engineering)
Vol. 9, No. 2, December 2025
Accredited Sinta-4 by RISTEKDIKTI Decree No. 79/E/KPT/2023

E-ISSN:2541-0806
P-ISSN:2540-8895

http://jcosine.if.unram.ac.id/ 175

https://issn.lipi.go.id/terbit/detail/1473904380
https://issn.lipi.go.id/terbit/detail/1446087842


 
 

 

data in a flexible document format and supports semi-
structured formats such as JSON, which is suitable for 
diverse scientific publication metadata. Unlike Cassandra, 
which is specifically designed to handle large-scale time-
series data and systems with high writing requirements, 
MongoDB is more suitable for applications that require 
schema flexibility and integration with user interfaces.[10]. 

Unlike previous studies that emphasized the integration 
of homogeneous structures using traditional ETL flows and 
relational databases, this study adopted an ELT (Extract, 
Load, Transform) approach combined with a NoSQL 
architecture to directly manage unstructured and semi-
structured metadata. Meanwhile, previous literature has 
mostly discussed NoSQL scalability or metadata 
transformation separately. This study presents an integrated 
approach that combines the flexibility of heterogeneous 
data integration with system performance evaluation, 
particularly in terms of scalability and data consistency as 
data volume continues to increase. 

The novelty of this study lies in the application of a 
comprehensive (end-to-end) integration process to various 
publication metadata formats, using flexible and efficient 
document modeling. Thus, this research contributes to the 
development of a scientific publication management 
system that is not only flexible and integrated but also 
reliable in performance. Additionally, this research aligns 
with current trends in academic data management and has 
the potential to serve as a foundation for the development 
of future academic information systems. 

II. LITERATURE REVIEW 
Various studies have been conducted on developing 

information systems for managing scientific publication 
metadata, covering aspects such as data storage, 
transformation, and user interfaces. Key challenges in such 
systems include inconsistent metadata structures, the need 
for flexible input formats, and efficient validation and 
deduplication processes. Some studies have focused on 
institutional repository design, the use of flexible databases 
like MongoDB, and automated data transformation 
workflows. These works serve both as references and 
evaluation benchmarks in designing a web-based scientific 
publication management system that prioritizes efficient 
data handling and high data quality.  

Silva et al. [11] introduced EasyBDI, a logic-based data 
integration system capable of schema mapping and query 
transformation across heterogeneous data sources. While 
the system supports diverse input formats such as manual 
entry and CSV uploads, it does not address crucial issues 
like metadata validation and deduplication in the context of 
scientific publications. Complementing the schema 
flexibility aspect, Cabral et al. [12] proposed a conceptual 
modeling approach to generate schema-independent 
queries for MongoDB. This allows for flexible metadata 
access across varying document structures, although it 
lacks mechanisms for data quality enhancement such as 
validation or normalization.  

Meanwhile, Reza et al. [3] emphasized the importance 
of web-based institutional repository platforms through the 
implementation of DSpace and the Dublin Core standard. 
While effective in managing academic archives, this 
approach remains limited to relational models and does not 
leverage schema flexibility or transformation automation as 
enabled by ELT. Locally, Anthony and Tony [13] 
developed a faculty publication management system using 
a manual approach with PostgreSQL. Although it improved 
administrative efficiency, the system lacked bulk data 
processing and automated transformation making ELT 
implementation in this study a distinctive advantage.  

Regarding data quality and consistency, Ye et al. [14] 
proposed an entity resolution method using blocking and 
matching techniques to handle duplication. This is 
particularly relevant for scientific publication systems. In 
this study, deduplication is implemented using upsert 
operations and key attribute validation in MongoDB. 
Furthermore, MongoDB's support for flexible structures 
and high data loads is reinforced by findings from Mohan 
et al. [15], who demonstrated NoSQL's performance 
advantages in analytical scenarios. These findings support 
the decision to use MongoDB as the system's storage 
backbone. Additionally, Alflahi et al. [16] suggested 
transaction management strategies in MongoDB to 
maintain data integrity. Techniques such as separating 
read-write operations, using upserts, and validating through 
pipelines are also adopted in this system to support efficient 
and consistent management of publication metadata at 
scale.     

 
 

TABLE I.  TABLE OF SOTA 

Title Method Result Limitations 
Logical Big Data Integration and 
Near Real-time Data Analytics 

Logical schema mapping, query 
rewriting 

Supports integration from various 
data formats and structures 

Does not handle deduplication or 
metadata validation 

Enabling Schema Independent 
Data Retrieval Queries in 
MongoDB 

Entity conceptualization, 
MongoDB query abstraction 

Provides flexible access to data 
across documents with different 
schemas 

Does not address metadata 
validation or quality 

Perancangan dan Implementasi 
Institutional Repository dengan 
Metada Dublin Core 

Waterfall model, DSpace, Dublin 
Core, PostgreSQL 

Manages institutional archives 
using standardized metadata 
structure 

Not flexible with heterogeneous 
input and lacks automated data 
transformation 

Perancangan Aplikasi Manajemen 
Data Publikasi dan Penelitian 

Web-based system (Node.js, 
jQuery), PostgreSQL 

Improves administrative efficiency 
in managing publication data 

Does not support bulk input and 
has not implemented the ELT 
transformation approach 

Multi-Source Data Repairing: A 
Comprehensive Survey 

Blocking-based matching, entity 
resolution framework 

Reduces data duplication across 
entities through matching 

Not integrated into scientific 
publication management systems 

J-COSINE (Journal of Computer Science and Informatics Engineering)
Vol. 9, No. 2, December 2025
Accredited Sinta-4 by RISTEKDIKTI Decree No. 79/E/KPT/2023

E-ISSN:2541-0806
P-ISSN:2540-8895

http://jcosine.if.unram.ac.id/ 176

https://issn.lipi.go.id/terbit/detail/1473904380
https://issn.lipi.go.id/terbit/detail/1446087842


 
 

 

Evaluating NoSQL Database for 
OLAP Workloads: A 
Benchmarking Study of 
MongoDB, Redis, Kudu, and 
ArangoDB 

Benchmark testing on large 
workloads 

MongoDB efficiently handles big 
data workloads 

Not focused on the domain of 
scientific publication metadata 

Enhancement of Database Access 
Performance by Improving Data 
Consistency in Non-Relational 
Database System (NoSQL) 

Upsert, pipeline validation Improves consistency and 
efficiency in bulk data processing 

Does not address integration of 
data from diverse publication input 
formats 

Table I presents a summary of various approaches from 
previous research that are relevant in developing a 
scientific publication data management system. Each study 
has its own focus, such as schema mapping, query 
flexibility, system performance optimization, as well as 
data consistency and validity. Although these studies 
contribute significantly, most still have limitations, 
particularly in the direct application of flexible scientific 
repository systems, handling metadata entry duplication, 
and performing dynamic data transformation from various 
input formats. Therefore, this research proposes a more 
integrated approach through the development of a 
MongoDB-based system that supports the ELT (Extract, 
Load, Transform) process, duplication detection and 
handling using upsert techniques and aggregation 
pipelines, and accommodates data input both via CSV file 
uploads and manual form entries. This strategy is expected 
to address the key challenges that have not been fully 
resolved by previous studies. 

III. RESEARCH METHODOLOGY 
This research was conducted using the Research and 

Development (R&D) approach method with the aim of 
developing and evaluating a scientific publication data 
integration system using NoSQL architecture. To clarify 
the research flow, Fig. 1 presents the process sequence 
from the start to finish in a structured and systematic 
manner. 

 

 
Fig. 1. Research Flow 

Fig. 1 shows the flow of research stages using an 
iterative approach, which allows for iterative evaluation 
and improvement of the system until the results obtained 
meet the research objectives. The research process starts 
from planning, design, system implementation, and 
testing. The test results carried out at the testing stage will 
be evaluated in the appropriate. If it is not appropriate, the 

improvements will be made at the retrospective stage. If it 
is appropriate, the process will be stopped. The flow 
illustrates the XP principle that emphasizes continuous 
improvement. 

A. Planning 
The first stage is the planning stage, which includes the 

identification of needs and the formulation of problems. At 
this stage, a literature review of NoSQL architecture, the 
ELT method, and heterogeneous data integration 
techniques was conducted. Furthermore, this stage also 
determines the tools and technologies, such as MongoDB, 
React, and Express.js, to ensure the system development 
process runs effectively and meets its objectives. 

B. Design 
The second stage after planning is system design. At 

this stage, an overall architecture is designed that includes 
the frontend, backend, and database. 

B.1. Use Case Diagram 
 

 
Fig. 2. Use Case Diagram 

Fig. 2 illustrates the interaction between users and the 
system in managing scientific publication data. There are 
two main actors, namely Admin and User. Admins must 
first log in to acces all system features, such as viewing 
dashboards, adding data, editing, and deleting publication 
data. Meanwhile, User have limited access rights, which 
can only view statistics, search for publications, view lists 
and details of scientific publications without the need to 
log in.  

J-COSINE (Journal of Computer Science and Informatics Engineering)
Vol. 9, No. 2, December 2025
Accredited Sinta-4 by RISTEKDIKTI Decree No. 79/E/KPT/2023

E-ISSN:2541-0806
P-ISSN:2540-8895

http://jcosine.if.unram.ac.id/ 177

https://issn.lipi.go.id/terbit/detail/1473904380
https://issn.lipi.go.id/terbit/detail/1446087842


 
 

 

B.2. Flowchart Diagram 

 
Fig. 3. Flowchart Diagram 

As illustrated in Fig. 3, the flowchart on the left 
represents the interaction flow for general users. The 
process begins on the homepage, where users can search 
for publications using specific keywords. The system will 
then display a list of relevant publications. When a user 
selects an entry, the system presents the complete details 
of the publication. If available, users can also download 
the associated publication file before returning to the 
publication list. This flow does not require authentication 
and is designed to support open and user-friendly data 
exploration. 

On the other hand, the flowchart on the right outlines 
the process flow for users with admin privileges. The 
admin begins by logging into the system, and upon 
successful authentication, is directed to the dashboard. 
From there, the admin can manage publications by adding, 
updating, or deleting data. After any action is performed, 
the system displays a confirmation message indicating that 
the operation was successful. This flow is designed to 
maintain data integrity and consistency by enabling direct 
management of the MongoDB database through backend 
API interactions. 

B.3. Activity Diagram  

 
Fig. 4. Activity Diagram 

Fig. 4 is one of the activity diagrams in this study, 
illustrating the process flow of adding publication data 
through the file upload feature by the admin. This diagram 
describes the interaction between three main components 
Admin, System, and Database in handling the upload, 
storage, and transformation of publication data. 

B.4. Data Schema Structure  
{ 
  "_id": "ObjectId", 
  "ID_Jurnal": "String", 
  "Judul_Jurnal": "String", 
  "Nama_Jurnal": "String", 
  "URL_Jurnal": "String", 
  "File_Jurnal": "String", 
  "Tahun_Jurnal": "Number", 
  "Bulan_Jurnal": "Number",  
  "Nama_Prodi": "String", 
  "Data_Personil": { 
    "ketua": "String", 
    "anggota": [ 
      "String",  // anggota1 
      "String",  // anggota2 
      ... 
    ] 
  } 

} 

The data structure of scientific publications is stored as 
JSON documents in MongoDB, which includes metadata 
information of scientific publications. For personnel data, 
it is organized in a nested manner through the 
‘Data_Personil’ object, which contains the name of the 
chairperson and a list of author members. This format 
takes advantage of MongoDB’s flexibility to handle 
structured and semi-structured data, and supports efficient 
searching and data transformation. 

B.5. System Architeture Diagram  

 
Fig. 5. System Architecture Diagram 

Based on Fig. 5, this system architecture consists of 
three main components, namely React.js as the frontend, 
Express.js as the backend, and MongoDB Atlas as the 
NoSQL database. React.js is used to input manual data and 
upload CSV files, then the data is sent to the backend via 
REST API. The backend with Express.js processes, 
validates, and saves the data to MongoDB. The data 
transformation process is performed using Aggregation 
Pipeline after the data enters collection. The systems is 
designed to effectively manage heteregeneous data and 
support efficient searching, filtering, and visualization of 
data. 

J-COSINE (Journal of Computer Science and Informatics Engineering)
Vol. 9, No. 2, December 2025
Accredited Sinta-4 by RISTEKDIKTI Decree No. 79/E/KPT/2023

E-ISSN:2541-0806
P-ISSN:2540-8895

http://jcosine.if.unram.ac.id/ 178

https://issn.lipi.go.id/terbit/detail/1473904380
https://issn.lipi.go.id/terbit/detail/1446087842


 
 

 

C. System Implementation 
The system implementation phase is designed to 

support the efficient and structured management and 
processing of scientific publication data from various study 
programs. The system consists of three main components: 
the frontend, the backend, and the NoSQL database. The 
frontend, built with React.js, offers two methods for data 
input: uploading a CSV file and manually entering data 
through a form. Once submitted, the data is sent to the 
backend in JSON format for further processing.  

The backend, developed using Express.js, acts as a 
bridge between the user interface and the database. It is 
responsible for processing the received data and storing it 
in the initial raw_publications collection within MongoDB 
Atlas. In addition, the backend is equipped with specific 
endpoints that trigger the data transformation process once 
loading is complete.  

MongoDB Atlas serves as the NoSQL database 
solution, supporting the storage of semi-structured data. 
The raw_publications collection temporarily holds raw data 
in its original format. The transformation process is 
designed to run automatically using the MongoDB 
Aggregation Pipeline. This process involves several stages: 
$project reshapes the metadata structure, $addFields 
adjusts attribute formats, and $match filters for valid 
records. The final stage, $merge, saves the transformed data 
into the target publications collection. To avoid duplication, 
the system applies an upsert logic based on a combination 
of key attributes. 

D. Testing 
System testing was divided into two categories: 

functional and non-functional testing. Functional testing 
was carried out using the black-box method to ensure that 
all features operated as expected, including manual data 
input, CSV file uploads, search, filtering, data 
visualization, and CRUD operations. Meanwhile, non-
functional testing focused on evaluating the system’s 
performance and scalability. This involved simulating 
large-scale data processing to assess stability, response 
time, and data consistency throughout the Extract, Load, 
and Transform (ELT) process. Scalability was tested using 
stress and spike testing methods, while data consistency 
was evaluated through duplication checks. 

E. Retrospective 
The retrospective stage is an evaluation process to 

review the results of work in one development cycle, 
identify things that went well and thing that need to be 
imporved, and formulate improvement steps for the next 
iteration. 

IV. RESULTS AND DISCUSSION 
This section presents the results of the development 

process for the scientific publication data management 
website, including the implementation of the user interface, 
core features, and data processing mechanisms that enable 
efficient metadata management. In addition, it discusses the 

outcomes of both functional and non-functional testing to 
evaluate the system’s overall performance and reliability. 

A. System Implementation Results 
After the system components were fully developed, the 

implementation phase began by building a web interface 
integrated with both the backend and the database. The 
interface is designed to allow users to efficiently access, 
search, filter, and manage scientific publication data 
through an interactive and responsive platform. 

 
Fig. 6. Homepage 

Fig. 6 shows the homepage of the scientific publication 
management website for the Faculty of Engineering at the 
University of Mataram. This page serves as the main entry 
point for users to access publication information. It features 
a header with navigation menus, including "Home" and 
"Publications," as well as a search function that allows 
users to find publications using specific keywords. The 
interface is designed to be simple and intuitive, making it 
easy to use for a wide range of users, including lecturers, 
students, and administrative staff. 

 
 

 
Fig. 7. Search, Filter, and List Publications 

In Fig. 7, the search, filter, and list features of 
publications are shown, which can be accessed by all users 
without the need to login. Users can enter certain keywords 
in the search field, such as publication title or author name, 
to find relevant data. In addition, filter options are available 
based on study program and publication year, which helps 
users filter data more specifically. 

 

J-COSINE (Journal of Computer Science and Informatics Engineering)
Vol. 9, No. 2, December 2025
Accredited Sinta-4 by RISTEKDIKTI Decree No. 79/E/KPT/2023

E-ISSN:2541-0806
P-ISSN:2540-8895

http://jcosine.if.unram.ac.id/ 179

https://issn.lipi.go.id/terbit/detail/1473904380
https://issn.lipi.go.id/terbit/detail/1446087842


 
 

 

 
Fig. 8. Detail Publications 

Based on Fig. 8, the publication details page is 
displayed, which contains the complate metadata of a 
scientific publication entry. This page provides a more 
comprehensive view than the publication list, allowing 
users to review the content and context of a publication 
before downloading or referring to it. All data is 
dynamically pulled from MongoDb database based on the 
selected publication ID. 

 

 
Fig. 9. Login Page 

Fig. 9 shows the login page used by the admin to access 
the publication data management feature. Login is done by 
entering the username and password that has been 
registered previously. After a successful authentication 
process, the admin will be directed to the dashboard page 
and features such as add, change, and delete publications 
are available. The login page serves as an access 
restriction, so that only users with certain authorities can 
make changes to publication data. 

 
Fig. 10. Dashboard Admin 

The admin dashboard display in this system is designed 
to facilitate the monitoring and analysis of scientific 

publication data stored in the database. The dashboard 
displays a number of key indicators such as total journals, 
number of journals in 2024, number of study programs, 
number of unique authors, and total publications from the 
five study programs with the highest contributions. At the 
top, there is a year filter feature that allows admins to 
costumize the data display based on the year of publication. 
Data visualization is presented through two graphs, namely 
a line graph illustration the distribution of journals per 
month in the selected year and a bar graph showing the 
distribution of publication counts per academic program. 
This visualization aims to provide a clear overview of 
scientific publication trends and the contribution levels of 
each academic program within the Faculty of Engineering.  

 

 
Fig. 11. Manage Publications Data 

As shown in Fig. 11, the publication data management 
feature is accessible only to admin users after successful 
login. Through this page, admins can perform three main 
operations: adding, editing, and deleting scientific 
publication records stored in the MongoDB database. There 
are two methods for adding data. The first is by filling out 
a form containing multiple metadata fields. The submitted 
form data is sent in JSON format to the backend, where it 
follows the same processing flow as a CSV upload: it is first 
stored in the raw_publications collection, then 
automatically transformed through the ELT process using 
the MongoDB Aggregation Pipeline. This ensures that both 
manual and bulk inputs result in consistent and valid final 
data.  

The second method allows admins to upload a CSV file 
containing multiple publication records at once. In this 
approach, the system automatically stores the raw data in a 
temporary collection and immediately triggers the 
transformation process on the backend. This process 
includes text format normalization, required attribute 
validation, restructuring of the Data_Personil field, and 
final storage into the publications collection using an upsert 
mechanism to prevent duplication. This approach follows 
the Extract, Load, Transform (ELT) principle, where data 
processing occurs after loading, making it more flexible in 
handling varying input structures.  

An example of the final transformed data is shown in 
the document snippet in Fig. 12, which is stored in the 
publications collection in MongoDB. This JSON format 

J-COSINE (Journal of Computer Science and Informatics Engineering)
Vol. 9, No. 2, December 2025
Accredited Sinta-4 by RISTEKDIKTI Decree No. 79/E/KPT/2023

E-ISSN:2541-0806
P-ISSN:2540-8895

http://jcosine.if.unram.ac.id/ 180

https://issn.lipi.go.id/terbit/detail/1473904380
https://issn.lipi.go.id/terbit/detail/1446087842


 
 

 

represents the normalized and validated metadata of a 
scientific publication successfully processed by the system. 

 
Fig. 12. Result of Database 

In addition to adding new records, admins can also edit 
existing publication data. The system displays the current 
data in an editable form, allowing admins to make updates 
directly and save the changes back to the database. Any 
modifications are immediately reflected in the user-facing 
publication list. For entries that are irrelevant or contain 
incorrect information, a delete feature is available, enabling 
admins to remove specific publications. To prevent 
accidental deletions, the system prompts a confirmation 
message before proceeding. All data management 
operations are designed to interact directly with the 
MongoDB NoSQL database through backend APIs, 
ensuring efficient and consistent processes for storing, 
updating, and deleting data. 

B. Testing 
System testing is carried out to ensure that all features 

have run according to function and the system meets the 
required quality standards. Testing is done thoroughly on 
the functional (features) and non-functional (performance 
in scalability and data consistency). 

B.1. Functional Testing 
Functional testing uses the Black Box testing method, 

which is a testing method based on input and output without 
paying attention to the internal processes of the system, 
which aims to ensure that each feature on the system work 
correctly according to user needs. That results of functional 
testing are shown in Table III. 

TABLE II.  RESULTS OF FUNCTIONAL TESTING 

No Featured 
Tested 

Input/Test 
Case 

Expected 
Output  Remarks 

1. Admin 
Login 

Valid 
username and 
password 

Redirected to 
admin 
dashboard 

Successful 

2. Admin 
Login 

Incorrect 
username or 
password 

Error message 
appears Successful 

3. Publication 
Search 

Keyword 
“website” 

Display a list 
of relevant 
publications 

Successful 

4. 
Filter by 
Study 
Program 

Select 
“Informatics 
Engineering” 

Display only 
publications 
from that 
program 

Successful 

5. Filter by 
Year Select “2023” 

Display only 
publications 
from that year 

Successful 

6. 
View 
Publication 
Details 

Click detail 
button on one 
entry 

Display 
complete 
publication 
detail page 

Successful 

7. 
Add 
Publication 
(Form) 

Fill all fields 
and click 
submit 

Data 
successfully 
added to the 
system 

Successful 

8. 

Add 
Publication 
(Upload 
File) 

Upload valid 
CSV file 

All data from 
the file 
successfully 
added 

Successful 

9. 
Edit 
Publication 
Data 

Chage the 
title and click 
save 

Changes saved 
and displayed 
to the user 

Successful 

10. Delete 
Publication 

Click delete 
button and 
confirm 

Data removed 
from the 
system 

Successful 

11. Admin 
Logout 

Click logout 
button 

Redirect back 
tologin page Successful 

 
Table II shows that all the main features of the system 

are working well. Login successfully verifies credentials, 
search and publication filters work according to keywords, 
and publication details can be displayed correctly. Data 
addition, either through forms or CSV, successfully saves 
new data. Edit and delete features function as expected, and 
logout redirects back to the login page. All test scenarios 
produce appropriate outputs, indicating that the system is 
functioning stably and according to user needs. 

B.2. Non-Functional Testing 
Non-functional testing aims to evaluate aspects of the 

system that are not directly related to functional output, but 
still have a significant impact on the overall quality and 
reliability of the system. In this study, non-functional 
testing was carried out with two main components, namely 
system performance, particularly in terms of scalability and 
data consistency. The evaluation of scalability was 
conducted to measure the extent to which the system is 
capable of handling large requests within a limited time, 
especially during mass data uploads. This testing focused 
on the ‘POST api/elt/upload-and-transform’ endpoint, 
which plays an important role in handling CSV file uploads 
and storing scientific publication data in the MongoDB 
database. 

To simulate large-scale data processing, a file 
containing 1,000 dummy publication entries was used. This 
dummy data was deliberately designed to resemble the 
structure and level of complexity of the original dataset, 
enabling it to realistically represent high system load 
conditions. This strategy allows for more optimal 
evaluation of system capacity limits without being 
constrained by the limitations of the actual dataset, which 
tends to be smaller. The five configuration scenarios used 
in the scalability testing are presented in Table IV. 

TABLE III.  CONFIGURATION USED FOR SCALABILITY TESTING 

Configuration Number of 
Threads 

Ramp-Up Data Volume 

Test 1 10 30 sec 1,000 
Test 2 20 30 sec 1,000 

J-COSINE (Journal of Computer Science and Informatics Engineering)
Vol. 9, No. 2, December 2025
Accredited Sinta-4 by RISTEKDIKTI Decree No. 79/E/KPT/2023

E-ISSN:2541-0806
P-ISSN:2540-8895

http://jcosine.if.unram.ac.id/ 181

https://issn.lipi.go.id/terbit/detail/1473904380
https://issn.lipi.go.id/terbit/detail/1446087842


 
 

 

Test 3 50 30 sec 1,000 
Test 4 100 30 sec 1,000 

Test 5 (Spike) 100 1 sec 1,000 
 

TABLE IV.  RESULTS OF SCALABILITY TESTING 

Configuration Avg Resp 
Time (ms) Error Throughput 

(request/min) 
Test 1 4.792 0.00% 12.5 
Test 2 100.533 0.00% 2.8 
Test 3 348.547 22.58% 1.5 
Test 4 889.794 61.73% 1.7 
Test 5 588.022 88.97% 3.8 

 
Based on the scalability test results shown in Table V, 

the system shows significant performance differences as 
the number of threads or simultaneous users increases. In 
Test 1 (10 users), the system showed the best performance 
with an average response time of 4.792 ms, no errors 
(0.00%), and a throughput of 12.5 requests per minute. This 
reflects that the system performs very well under low load. 
However, in Test 2 and Test 3 (with 20 and 50 users), there 
was a significant increase in response time to 100.533 ms 
and 348.547 ms, respectively, along with the emergence of 
errors up to 22.58%. This indicates that the system begins 
to experience bottlenecks when handling higher parallel 
loads.  

Conditions worsened in Test 4 and Test 5 (100 users), 
where the error rate reached 61.73% and 88.97% 
respectively, with the average response time reaching 
nearly 15 minutes. Although throughput was relatively 
stable (1.5–3.8 requests per minute), this did not reflect the 
system's success, but rather that requests were processed or 
failed in a consistent manner. The combination of high 
response times and high failure rates indicates that the load 
of data storage and transformation processes on the 
backend (MongoDB) became a critical point for this 
system.  

When compared to systems in previous studies, such as 
those conducted by Yerra (2025), the performance 
difference becomes even more evident. Yerra implemented 
an ETL pipeline using SSIS and achieved high efficiency 
in large-scale data integration through optimization 
techniques such as Fast Load, buffer settings, and batch 
inserts. The processing time achieved in that study was 
significantly faster, even when processing large volumes of 
data repeatedly. Meanwhile, the system in this study uses 
an ELT approach with Node.js and MongoDB, which, 
although flexible and modern, has not been optimized in 
terms of batch processing and concurrency control. This 
indicates that there is still significant room for performance 
improvement, particularly in batching configuration, the 
use of the bulkWrite() method with upsert, and system 
tuning to match the performance of similar systems 
discussed in the literature.  

Thus, Test 1 configuration can be considered the most 
balanced as it maintains system stability and integrity under 
light load conditions. However, to achieve performance 
comparable to other systems in the literature, technical 

enhancements are required, particularly in parallel 
processing of large data and storage efficiency in 
MongoDB. 

Next, a data consistency test was conducted to 
evaluate the system's ability to prevent duplicate data 
storage in the ‘publications’ collection. This test focused on 
ensuring that after the data integration process, especially 
during scalability testing, there was no data duplication in 
the collection. This test is important because repeatedly 
loading data with the same file has the potential to create 
identical data copies. In the ‘publications’ collection, the 
system is designed to store only one version of each data 
entry and automatically ignore other identical copies. This 
is based on a combination of key attributes, namely 
‘Judul_Jurnal’, ‘Tahun_Jurnal’, and ‘Ketua’. To detect 
duplicates after the upload process, an aggregation query is 
performed on the ‘publications’ collection using the 
combination of these three attributes. The query used is as 
follows: 
db.publications.aggregate([ 

  { 
    $group: { 
      _id: { 
        Judul_Jurnal: "$Judul_Jurnal", 
        Tahun_Jurnal: "$Tahun_Jurnal", 
        Ketua: "$Data_Personil.Ketua" 
      }, 
      count: {$sum: 1} 
    } 
  }, 
  { 
    $match: { 
      count: {$gt: 1} 
    } 
  } 

]) 
 

After the query was performed, the result was that the 
query returned an empty array ([]) in every test. This shows 
that the system successfully maintained data integrity even 
under high load pressure. In addition, the results also 
reinforce that the storage and validation mechanisms 
implemented in the system, including unique index settings 
and attribute mapping, have functioned effectively to 
prevent data duplication in this system. 

V. CONCLUSION AND SUGGESTIONS 
This study successfully designed and implemented a 

web-based scientific publication data management system 
using a NoSQL architecture, with MongoDB Atlas as the 
database and an Extract, Load, Transform (ELT) approach. 
The system is capable of handling varying metadata 
structures from different study programs within the 
Faculty of Engineering at UNRAM, through both manual 
input and CSV file uploads. Data transformation and 
validation are performed automatically using the 
Aggregation Pipeline to normalize the structure, remove 
duplicates, and ensure consistent data storage.  

Functional testing showed that all key features such as 
search, filtering, data management (CRUD), and 
visualization worked as intended. However, since the 
testing was conducted by the developer, the results are 

J-COSINE (Journal of Computer Science and Informatics Engineering)
Vol. 9, No. 2, December 2025
Accredited Sinta-4 by RISTEKDIKTI Decree No. 79/E/KPT/2023

E-ISSN:2541-0806
P-ISSN:2540-8895

http://jcosine.if.unram.ac.id/ 182

https://issn.lipi.go.id/terbit/detail/1473904380
https://issn.lipi.go.id/terbit/detail/1446087842


 
 

 

internally valid but still require further testing by external 
users for more objective evaluation. From a non-functional 
perspective, the system performs optimally under light 
loads (up to 10 users), but performance degrades under 
heavy loads. Consistency tests also showed that the system 
can technically prevent identical data, but it still struggles 
with detecting semantic similarity, such as variations in 
name spelling. This highlights the need to further develop 
smarter entity matching features.  

For future development, it is recommended to optimize 
backend performance using batch processing or the 
bulkWrite() method, and to add name-matching 
algorithms (e.g., fuzzy matching) to detect duplicates 
despite spelling differences. The system should also be 
enhanced with advanced authentication, integration with 
institutional systems, and monitoring and analytics 
features to support long-term sustainability and 
functionality expansion. 

REFERENCES 
[1] A. A. Aydin, “A Comparative Perspective on 

Technologies of Big Data Value Chain,” IEEE 
Access, vol. 11, 2023, doi: 
10.1109/ACCESS.2023.3323160. 

[2] V. Keskar*, Dr. J. Y. Yadav, and Dr. A. H. Kumar, 
“5V’s of Big Data Attributes and their Relevance 
and Importance across Domains,” International 
Journal of Innovative Technology and Exploring 
Engineering, vol. 9, no. 11, pp. 154–163, Sep. 
2020, doi: 10.35940/ijitee.K7709.0991120. 

[3] F. Reza, I. K. D. Indah, and M. Ropianto, 
“Perancangan Dan Implementasi Institutional 
Repository Dengan Metadata Dublin Core,” 
Jurnal KomtekInfo, pp. 125–132, Dec. 2022, doi: 
10.35134/komtekinfo.v9i4.318. 

[4] S. J. Pipin, “BIG DATA (Mengenal Big Data & 
Implementasinya di Berbagai Bidang),” 2024. 
[Online]. Available: 
https://www.researchgate.net/publication/378313
489 

[5] N. Reddy Mandala, “Data Integration in 
Heterogeneous Systems”, doi: 
10.56472/25832646/JETA-V2I4P122. 

[6] I. M. Putrama and P. Martinek, “Heterogeneous 
data integration: Challenges and opportunities,” 

Oct. 01, 2024, Elsevier Inc. doi: 
10.1016/j.dib.2024.110853. 

[7] P. Badgujar, “Optimizing ETL Processes for 
Large-Scale Data Warehouses,” 2020. doi: 
https://doi.org/10.52783/jisem.v10i8s.1130. 

[8] W. Khan, T. Kumar, C. Zhang, K. Raj, A. M. Roy, 
and B. Luo, “SQL and NoSQL Database Software 
Architecture Performance Analysis and 
Assessments—A Systematic Literature Review,” 
2023. doi: 10.3390/bdcc7020097. 

[9] “Comparative Case Study Difference Between 
Azure Cloud SQL and Mongo Atlas MongoDB 
NoSQL Database,” International Journal of 
Emerging Trends in Engineering Research, vol. 9, 
no. 7, 2021, doi: 10.30534/ijeter/2021/26972021. 

[10] B. Balusamy, N. Abirami. R, S. Kadry, and A. H. 
Gandomi, “Big Data: Concepts, Technology, and 
Architecture,” 2021. 

[11] B. Silva, J. Moreira, and R. L. de C. Costa, 
“Logical big data integration and near real-time 
data analytics,” Data Knowl Eng, vol. 146, Jul. 
2023, doi: 10.1016/j.datak.2023.102185. 

[12] J. V. L. Cabral, V. E. R. Noguera, R. R. Ciferri, 
and D. Lucrédio, “Enabling schema-independent 
data retrieval queries in MongoDB,” Inf Syst, vol. 
114, 2023, doi: 10.1016/j.is.2023.102165. 

[13] E. Anthony and Tony, “PERANCANGAN 
APLIKASI MANAJEMEN DATA PUBLIKASI 
DAN PENELITIAN,” JIKSI, 2024, doi: 
https://doi.org/10.24912/jiksi.v12i2.31564. 

[14] C. Ye, H. Duan, H. Zhang, H. Zhang, H. Wang, 
and G. Dai, “Multi-Source Data Repairing: A 
Comprehensive Survey,” May 01, 2023, MDPI. 
doi: 10.3390/math11102314. 

[15] R. K. Mohan, R. R. S. Kanmani, K. A. Ganesan, 
and N. Ramasubramanian, “Evaluating NoSQL 
Databases for OLAP Workloads: A 
Benchmarking Study of MongoDB, Redis, Kudu 
and ArangoDB,” May 2024, doi: 
https://doi.org/10.48550/arXiv.2405.17731. 

[16] A. A. E. Alflahi, M. A. Y. Mohammed, and A. 
Alsammani, “Enhancement of database access 
performance by improving data consistency in a 
non-relational database system (NoSQL),” 2023. 
doi: https://doi.org/10.48550/arXiv.2308.13921. 

  
 

J-COSINE (Journal of Computer Science and Informatics Engineering)
Vol. 9, No. 2, December 2025
Accredited Sinta-4 by RISTEKDIKTI Decree No. 79/E/KPT/2023

E-ISSN:2541-0806
P-ISSN:2540-8895

http://jcosine.if.unram.ac.id/ 183

https://issn.lipi.go.id/terbit/detail/1473904380
https://issn.lipi.go.id/terbit/detail/1446087842

